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ABSTRACT 
 

The GNSS-based Attitude Determination is a demanding application which 
requires a precise relative positioning solution. In order to obtain an accurate 
estimate of a platform’s orientation, a GNSS receiver must fix the integer 
ambiguities inherent to the phase observables: the ambiguity resolution 
process is the key for exploiting the higher precision of carrier phase 
measurements with respect to the code measurements. Among the set of 
admissible integer ambiguity estimators, we focus on the optimal Integer 
Least-Squares estimator, which has been modified to include a geometrical 
non-linear constraint on the baseline length that arises when considering two 
antennae separated by a known distance. The challenge of reliable and fast 
integer estimation is particularly hard for single-frequency applications: the 
method proposed in this contribution leads to a strong reduction on the 
Time-To-Fix, i.e. the number of epochs needed to achieve a sufficient 
reliability on the fixed ambiguity vector. Simulation and experimental results 
showed the large improvement obtained when applying the non-linear 
constrained model. 
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1. INTRODUCTION 
 
GNSS-based Attitude Determination is a challenging high precise relative navigation 
application. In order to fully exploit the precision of the GNSS measurements, the phase 
observations must be employed, which are of two orders of magnitude more accurate than the 
code observations. The phase measurements are however affected by integer ambiguities, 
which must be resolved: the fixing process is challenging especially if one aims at fast 
(ideally single-epoch) and single-frequency solutions.  
The problem of ambiguity resolution for Attitude Determination is a rich area of study, and 
many techniques have been developed to cope with the issue, see e.g. Bar-Itzhack et al. 
(1997), Cohen (1992), Han and Rizos (1999), Kim and Langley (2000), Lu (1995), Park et al. 
(1996), Tu et al. (1996), Crassidis et al. (1997), Ziebart and Cross (2003).  
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In this work we concentrate on the LAMBDA (Least squares AMBiguity Decorrelation 
Adjustment) method. This algorithm, introduced in Teunissen (1993, 1994, 1995), is a fast, 
reliable and widely used implementation of the ILS (Integer Least-Squares) estimator, which 
was shown to be optimal in Teunissen (1999).  
When the baseline length is known, the components of the baseline vector must fulfill a non-
linear geometrical constraint: this leads to a modification of the ILS problem to a constrained 
ILS problem. To solve for the nonlinear constrained model, an extension of the original 
LAMBDA method is needed, as addressed in Teunissen (2006, 2008, 2008b). The 
introduction of the constraint on the baseline length makes the determination of the integer 
minimizer more difficult, in particular with regard to the search strategies to be adopted to 
perform the search in a large set of admissible integer candidates. Two search methods have 
been developed to cope with such a problem: the Expansion and the Search and Shrink 
approaches (Teunissen, 2006; Buist, 2007; Giorgi et al., 2008). Both methods provide a fast 
procedure for the search of the integer minimizer and are described in this contribution. The 
single-epoch performances of the new method are reported, and the increment in the single-
epoch/single-frequency success rate is demonstrated. 
An important aspect of the constrained ILS is the capacity of reducing the number of epochs 
needed to achieve a certain probability of fixing the correct integer vector of ambiguities: this 
is extensively studied through simulations and a kinematic test, and the large reduction with 
respect to the unconstrained ILS is shown.  
 
 
2. THE FUNCTIONAL AND STOCHASTIC MODELS FOR THE GNSS 
OBSERVABLES 
 
In this section the functional and stochastic models for the GNSS phase and code observables 
are introduced. It is shown how the geometrical constraint on the baseline length is included 
in a model solvable in the framework of the Integer Least-Squares theory.  
 
Assuming two antennae simultaneously tracking n+1 satellites on a single-frequency, any 
linearized double difference set of GNSS observations at a given epoch can be described via a 
Gauss-Markov model: 
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where E(y) is the expectation operator, y is the vector of code and phase observables (order 
2n), a is the vector of integer ambiguities (order n), and b is the vector of the p real-valued 
unknowns. Any atmosphere error is neglected, limiting the analysis to short baselines; it is 
assumed that the only real-valued unknowns are the three baseline coordinates, so that p = 3. 
A is the 2n×n matrix containing the carrier wavelengths while B is the 2n×3 matrix 
containing the unit line-of-sight vectors. The second line of (1) describes the stochastic 
model: D(y) is the dispersion operator and Qyy is the 2n×2n variance-covariance (v-c) matrix 
of the observables. If the baseline length is assumed to be constant, a quadratic constraint 
(||b||2 = l2) is added to the model (1): 
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The solution of this model must indeed respect two constraints: the integerness of the 
ambiguities and the geometrical constraint on the baseline vector. Constraining the baseline 
length has a straightforward geometrical interpretation: it is equivalent to impose the 
extremity of the vector b to lie on the surface of a sphere of radius l. 



 

 

 

When the observations span k epochs, the models (1)-(2) are rewritten as 
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where the symbol ⨂ denotes the Kronecker product. The ambiguities must be integers,  
a ∈ ℤn, and for the constrained model the set of k non-linear geometrical constraints has to be 
considered: ||bi|| = l ; i = 1,….,k. It is assumed that the baseline length does not vary during the 
k epochs considered.  
Every epoch is considered independent from the others in the stochastic model (a correlation 
could be easily considered) and the v-c matrix of the observations is taken constant over the 
time span. The model (3) holds true as long as neither carrier cycle slips nor a change in the 
number of tracked satellites occur. 
 
 
3. INTEGER LEAST-SQUARES 
 
In this section the solutions of the unconstrained and constrained models are presented, 
together with two strategies developed to make the search for the integer minimizer more 
efficient. 
 
3.1 The unconstrained solution 
 
The Least-Squares solution of the unconstrained model (1) was coined an ILS problem due to 
the integer nature of the ambiguities. The ILS estimator is demonstrated to be optimal among 
the class of admissible integer estimators (Teunissen, 1999), meaning that the ILS has the 
(statistical) property of maximizing the probability of estimating the correct integer values for 
the ambiguities. The solution of (1) is derived following a three-step procedure. Firstly, a float 
solution is obtained disregarding the integerness of the ambiguities, by solving the set of 
normal equations 
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The variance-covariance matrices of the float solutions are 
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Aiming to minimize the squared norm of the residuals of (1), it is useful to consider the 
following sum-of-squares decomposition: 
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baseline solution, i.e. the corrected float solution assuming the vector of ambiguities known: 
 1

ˆ ˆ ˆˆ
ˆ ˆ ˆ( ) ( )aaba
b a b Q Q a a−= − −  (7) 

ˆ( )b a
Q  is the corresponding v-c matrix: 

 1
ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ( ) aab a bb ba ab

Q Q Q Q Q−= −  (8) 

It is clear that, not imposing any constraint on b, the last term of (6) can be made zero for any 
integer-valued vector a, and the minimizer of (6) is 
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The sought for vector of integer ambiguities has the closest distance with respect to the float 
solution in the metric of the v-c matrix ˆ ˆaaQ . Since no analytical solutions of (9) are known, an 
extensive search in a subset of the n-dimensional space of integers is necessary.  
The LAMBDA method is a well-known and reliable implementation of the ILS estimator. It 
works by first decorrelating the original v-c matrix of ambiguities ˆ ˆaaQ , via an admissible 
transformation (i.e. which preserves the integerness of the variables in both the direct and the 
inverse transformations) (Teunissen, 1998); then the integer minimizer (9) is extensively 
searched inside the set (see Figure 1)  
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Geometrically, ( )2U χΩ  describes an hyper-
ellipsoid centred at â  with size and shape governed 
by the entries of ˆ ˆaaQ : the effect of the decorrelation 
is to strongly reduce the elongation of such hyper-
ellipsoid, so that the search is performed in a more 
efficient and, most important, faster way. 
The scalar 2χ  has to be chosen carefully: it needs to 
be small enough to limit the computational burden, 
but the non-emptiness of ( )2U χΩ  should be 

guaranteed. A good choice is to make use of the bootstrapped value ba  (Teunissen, 2006b) to 
set the size of UΩ : 
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Once the integer minimizer a  is found, the baseline vector is given by equation (7): as the 
expression (8) states, the precision of the fixed baseline solution is improved with respect to 
the float solution. 
 
3.2 The constrained solution 
 
When the baseline vector b has to fulfill the non-linear geometrical constraint, generally the 
last term on the right-hand side of (6) cannot be made zero for any choice of the vector of 
ambiguities a.  The solution of the constrained model (2) is addressed in Teunissen (2006, 
2008, 2008b), where the proposed implementation of the constrained ILS is coined the 
Constrained LAMBDA algorithm. 
The minimization problem is modified as 
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where the sought for integer vector a  not only weighs the distance from the float solution â  
(in the metric of ˆ ˆaaQ ), but also the distance of the baseline solution ˆ( )b a  (given the ambiguity 
vector) to the sphere with radius equal to the known baseline length, weighted by the v-c 
matrix ˆ( )b a

Q . Geometrically, the constrained least-squares problem (13) consists in projecting 

the conditional baseline solution ˆ( )b a  on the surface of a sphere of radius l, in the metric of 
the v-c matrix ˆ( )b a

Q . Equivalently, (13) could be seen as the problem of finding the point of 

contact between the sphere of radius l and the three-dimensional ellipsoid centred in ˆ( )b a  and 
shape governed by ˆ( )b a

Q . 

In principle the search for the minimizer of (12) can be performed extensively, as the 
unconstrained ILS, by means of searching inside the set   
 ( )2 2{ | ( ) }C na F aχ χΩ = ∈ ≤  (14) 
The weight matrix of the baseline term makes the search trickier than the unconstrained case: 
since the entries of the matrix ˆ( )b a

Q  are driven by the precise phase observations, the second 

term in (12) has a higher weight than the first. This has two consequences: firstly, the search 
space where the integer-valued vector a is searched is no longer ellipsoidal as it was for 

( )2U χΩ . Secondly, the choice for the scalar 2χ  becomes very critical: setting its value by 
picking up an integer vector a′  and computing 
 2 ( )F aχ ′=  (15) 
generally leads to unacceptable large values for 2χ , for which the computational burden is 

too high. The reason for this lies 
in the fact that the higher weight 
of the second term largely 
amplifies the values of 2χ  for 
any non-correct value of a. 
Moreover, the evaluation of the 
modified cost function involves 
the solution of a non-linear 
minimization problem, hence 
increasing the computational 
time associated to the evaluation 
of the residuals for each 
ambiguity vector.  
Two approaches were proposed 
to overcome these issues: the 

search strategies were coined the Expansion and the Search and Shrink approaches (Park and 
Teunissen, 2003; Buist, 2007; Giorgi et al., 2008). 
The cost function ( )F a  is bounded via the following two inequalities: 
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where mλ  and Mλ  are the 
smallest and the largest 
eigenvalues of the matrix 

1
ˆ( )b a

Q− . The term ( )ˆ( )b a l−‖ ‖  

is the distance between ˆ( )b a  
and the sphere of radius l, 
and it coincides with the 
value that the second term of 
the cost function ( )F a  
would assume if the weight 

matrix 1
ˆ( )b a

Q−  were a unit matrix. The aim of the introduction of 1( )F a  and 2 ( )F a  is to work 

with functions that are easier to evaluate than the original ( )F a , for which the solution of a 
non-linear constrained problem (13) has to be found. 
We define two search spaces associated to the two bounding functions as 

 

( )
( )

( ) ( ) ( ) ( )

2 2
1 1

2 2
2 2

2 2 2 2
2 1

{ | ( ) }

{ | ( ) }

n

n

C U

a F a

a F a

χ χ

χ χ

χ χ χ χ

Ω = ∈ ≤

Ω = ∈ ≤

Ω ⊆ Ω ⊆ Ω ⊆Ω



  (17) 

where the last relationship follows from the inequalities (16), and it is represented in Figure 2. 
 
The first proposed method is the Search and Shrink approach, visualized in Figure 3. This 
approach was introduced in Teunissen (2008) and tested in Giorgi et al. (2008). Initially, a 
proper integer vector is used to set the value of 2

0χ  to guarantee the non-emptiness of 

( )2
2 0χΩ . Then, a search is performed to find an integer vector in ( )2

2 0χΩ , say 1a , for which 

the value 2χ  can be made smaller: 2 2
1 2 1 2 0 0( ) ( )F a F aχ χ= < = . As soon as such vector is 

found, the scalar 2χ , and so the associated set ( )2
2 χΩ , is shrunk to a reduced size. The 

search proceeds by iteratively shrinking the search space until only one integer vector lies 
inside the set, say ka . Because of the inequalities (16), the found integer vector, which 
minimizes 2 ( )F a , might or might not be also the minimizer of ( )F a . For this reason, setting 

2
2 ( )k kF aχ = , all the integer vectors in ( )2C

kχΩ  are evaluated and the minimizer of ( )F a  is 
extracted. 
 

The second proposed search 
method is the Expansion 
approach (see Park and 
Teunissen, 2003; Buist, 
2007), illustrated in Figure 
4. Firstly, all the integer 
vectors contained in the set 

( )2
1 0χΩ , with 0χ  chosen 

small enough,  are 
enumerated and each one is 
used to compute the 



 

 

 

problem (13). Hence, the set ( )2
0

C χΩ  is evaluated: if it is empty, the scalar χ  is increased 

( 1 0χ χ> ), otherwise the minimizer of (12) is extracted. The main advantage of this method is 
that the search begins in a small search space, and the computation of a least-squares problem 
is limited to a very small set of candidates. By iteratively increasing the value of 2χ , the 
method quickly converges towards a non-empty set ( )2C χΩ , without the need for evaluating 
the problem (13) a large number of times. 
 
The use of the Expansion and the Search and Shrink approaches, which have proved to work 
equally well, makes the search for the integer minimizer (12) much faster, compared to the 
extensive search. 
 
3.3 The multi-epoch solution 
 
Considering a time window of k epochs, both the unconstrained and constrained methods 
presented can be extended to solve for the model (3). The main benefit of having a multi-
epoch processing is the higher accuracy of the float solution, and therefore an increased 
probability of fixing the correct integer vector.  
We begin to derive the float solutions â and îb  from the set of normal equations 
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The v-c matrices of the float solutions are 
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Where ˆka  indicates the ambiguity float solution when k-epochs are processed. ˆ ˆbb
Q is the 

(3 3k k× ) v-c matrix for the different values assumed by the baseline vector b during the 
1, ,i k= …  epochs processed: 
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The float solution could be obtained recursively assuming a motion model for the baseline. 
However, in this contribution only a batch processing strategy is analysed: the reason for this 
is that an optimal solution for the minimizer of a multi-epoch constrained model cannot be 
obtained recursively in a rigorous manner (Teunissen, 2007). 
The baseline solutions, provided the vector of ambiguities known, are 
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with v-c matrix 
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Because of the shape of the kM  and yQ  matrices, the v-c matrix ˆ( )b a
Q  has a block diagonal 

structure: 
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This is a consequence of the assumption made on the absence of correlation between epochs: 
each of the conditional baseline vector is uncorrelated with all the others. 
The sum-of-square decomposition of the squared norm of residual of (3) is 
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When no constraint on the baseline length is assumed, the last term can be made zero for any 
ambiguity vector, and the integer minimizer is found by minimizing the second term via the 
unconstrained LAMBDA method.  The entries of the matrix ˆ ˆk ka aQ  are reduced with respect to 
the single-epoch case, and therefore the probability of fixing the correct integer vector 
increases. 
For the constrained case, the epoch-by-epoch baseline solutions must respect the constraint on 
the length: from the sum-of-squares decomposition (24) follows that the function to be 
minimized is 
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The search for the minimizer a  can proceed as the single-epoch case depicted in the previous 
section, with the substitution of the original bounding functions with 
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where i

mλ  and i
Mλ  are the smallest and the largest eigenvalues of the matrix 1

ˆ ( )ib a
Q− . 

 
 
4. SIMULATIONS RESULTS 
 
The proposed implementation for the constrained LAMBDA was been initially tested with 



 

 

 

simulated data, to check the performance in a controlled environment, with a known set of 
error sources. In this section the simulation set-up is explained and we present the outcomes. 
 
4.1 Simulation set up 

 
The simulation inputs are summarized in Table 1: based on the geometry of the actual GPS 
constellation on 22 January 2008 (see Figure 5), we simulated 510  samples of data for a set of 
scenarios, which differ for undifferenced code (30-15-5 cm) and phase (30-3-1 mm) noise 
levels, and number of satellites (from 5 to 8). We considered a 2m length static baseline; no 
multipath effect was introduced in the simulated observations. The 36 sets were processed 
with both the unconstrained LAMBDA and the constrained LAMBDA. Two aspects of the 
proposed methods were carefully investigated: the increment in success rate, defined as the 
percentage of epochs where the vector of integer ambiguities is correctly resolved, and the 
number of epochs to be processed in order to achieve a pre-determined probability of fixing 
the correct integer vector. 
 
4.2 Simulation outcomes 
 
Firstly the single-frequency/single-epoch success rate of the unconstrained and constrained 
LAMBDA was analysed on the different simulated scenarios. 
Table 2 summarizes the outcomes for the two methods: the improvement achieved with the 
constrained LAMBDA is clear. As expected, the strengthening of the underlying model 
strongly affected the capacity of fixing the correct integer ambiguity vector, in particular for 
the weaker scenarios (lower number of satellites / higher noise levels), where the difference  



 

 

 

 
between the methods was large. It can be noted for example that the scenario characterized by 
1mm phase noise and 30cm code noise exceptionally improved from 6% to almost 96% of 
successfully fixed ambiguities.  
Table 2 also shows that for sufficiently strong scenarios (higher number of satellites/lower 
noise levels) the difference between the two methods was small, and the unconstrained 
LAMBDA already provided good results. In particular a significant dependence on the code 
noise was observed: the lower the value, the smaller the improvement that one can obtain 
passing from the unconstrained to the constrained method. This is due to the weighting of the 
two terms of the cost function (12): the matrices ˆ ˆaaQ  and ˆ( )b a

Q  are driven by the code and 

phase noise values, respectively.  When the difference between the two noise levels decreases, 
the relative weight associated to the baseline term reduces with respect to the ambiguity term, 
and so does the difference of the success rates achieved.  
 
The second aspect investigated was the Time-To-Fix, defined here as the number of epochs 
needed to assure a certain (experimental) probability of success rate. Each of the simulated 
scenarios was solved on a multi-epoch base, varying the k number of epochs used. 
Table 3 reports, for each of the scenarios, the number of epochs needed in the batch 
processing to achieve a success rate of at least 99%.  As expected, the constrained LAMBDA 
assured a strong reduction of the number of epochs to be employed, in particular for some of 
the weaker scenarios. Like the single-epoch case, the difference between the unconstrained 
and the constrained solutions was reduced when the noise on the code data was made smaller. 
 
Tables 2 and 3 show that a large improvement in performance was obtained when using the 
constrained LAMBDA method. Firstly, the single-epoch/single-frequency processing 
provided striking results, confirming that a single-epoch solution is feasible when 
strengthening the underlying model.  The outcomes relative to the scenarios with 3mm 
undifferenced phase noise, which are of higher practical relevance, show that the constrained 
method provided success rates higher than 99% on most of the set, whereas the unconstrained 
model achieved the same result only in two cases. As for the multi-epoch results, the same set 
of scenarios needed at most only 4 epochs to guarantee success rates higher than 99%, and it 
always required less epochs than the unconstrained case.  
We remark that the inclusion of the scenarios characterized by a 30mm noise on the 
undifferenced phase observations is too pessimistic, but it is useful to investigate the limits of 
the proposed algorithm. 
 
 
 



 

 

 

5. TESTING THE METHOD: A VESSEL COMPASS SOLUTION 
 
5.1 The kinematic test set up 

 
The algorithm was tested on data collected on board a ship sailing on the Schie river, Delft, 
The Netherlands. The vessel was sailed up and down the river for about 2.5 hours, collecting 
9000 epochs of single-frequency GPS observations from different antennae. We tested the 
algorithm on the 2m long baseline formed by the antennae 1-2 and the 1.5m long baseline 
formed by the antennae 2-3 (see Figure 6). The receivers employed were an Ashtech Z-12, a 
Leica SR530 and a Novatel OEM3. Figure 7 reports the number of satellites tracked and the  
PDOP values for the duration of the test. 
 
5.2 Experimental results 
 
The collected observations were processed with both the unconstrained and constrained 
methods: Table 4 reports the single-epoch and multi-epoch/single-frequency success rates 
obtained.  
As shown, the constrained LAMBDA method was capable to provide single-epoch/single-
frequency success rates higher than 97% on both the baselines considered, whereas the 
unconstrained model did not provide fixing rates higher than 82%. In particular, the 
improvement on the baseline 2-3 was rather large, passing from 62% for the unconstrained 
method to 97% for the constrained algorithm. 
It is noteworthy that applying the constrained LAMBDA on the baseline 1-2, the single-epoch 
solution was sufficient to get a 99% of success rate (with 7 epochs a 100% success rate was 
reached), and only a 3-epochs window was needed to obtain the same result on the baseline 2-
3. The unconstrained LAMBDA showed lower performance, due to the weaker model; the 
multi-epoch processing provided a certain improvement, but not to the same extent as the 
constrained method. In particular, we could not get 100% of success rate even considering 50-
epochs of data. 
To better highlight the benefits of exploiting the constraint, Table 5 reports the single-epoch  



 

 

 

 
and 10-epochs success rates as function of the number of satellites tracked. The performance 
of the constrained model was higher especially for observations collected when less satellites 
were available. 
Figures 8-9 show the single-epoch Compass solution (in terms of Heading and Elevation 
angles) for the two baselines, obtained respectively with the unconstrained and the 
constrained LAMBDA algorithms. 
Figures 10-11 report the Compass solution for the 10-epochs processing: it is evident the 
reduction of the number of uncorrected fixed ambiguities, which results in less scattered plots. 
 
 
6. CONCLUSIONS 
 
The problem of resolving the integer ambiguities which affect the GNSS phase carrier 
observations is the key for precise relative positioning solution. The theory of Integer Least 
Squares is widely used to fix the ambiguities, and the LAMBDA method is a fast and reliable 
mechanized procedure to implement the ILS. When two antennae are kept to a fixed and 
known distance, a non-linear constraint can be embedded in the theory, to the purpose of 
strengthening the model and improving the capacity of fixing the correct ambiguity vector. 
The non-linear constrained ILS principle was studied, and the constrained LAMBDA method 
was proposed as an implementation. Two approaches (the Expansion and the Search and 
Shrink) were described to efficiently perform the search for the integer minimizer.  
 
The proposed method was firstly tested on a set of simulated data, investigating the influence 
of the number of available satellites and the noise levels on the code and phase observations: 
the difference between the unconstrained and the constrained LAMBDA was generally large, 
with large improvements in success rate for the weaker scenarios.  
An important aspect of the constrained model is the reduction of the Time-To-Fix: through 
simulations it was shown how the constrained method can effectively reduce the time needed 
to reliably fix the vector of integer ambiguities. 
The algorithm was then tested on data collected on a vessel, for which the Compass solution 
was derived. The constrained LAMBDA outperformed the unconstrained method, allowing to 
correctly fix the ambiguities for more than 97% of the time already with the single-
epoch/single-frequency solution. Only few epochs (namely 3) are necessary to obtain more 
than 99% of success rate for the multi-epoch model on both the baselines processed.  
 
The application of the new method to both simulated and experimental data showed that the 
inclusion of the non-linear geometrical constraint provides a large improvement, making the 
ambiguity fixing process more reliable and effectively reducing the Time-To-Fix. 
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