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Abstract: The nonlinearity of the baseline length constrained GNSS compass model prohibits the use of
standard methods of ambiguity resolution. In this paper we therefore test to what extent a lin-
earized version of the constrained GNSS compass model is applicable. We present experimental
results for the linearized model and compare these results with results obtained for the uncon-
strained and nonlinearly constrained models. The results of the unconstrained and linearized
constrained models are obtained with the standard LAMBDA method, while those of the non-
linear model are obtained with the constrained LAMBDA method. Our focus is on the most
challenging case, being single-frequency, single-epoch ambiguity resolution.
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1 INTRODUCTION
The GNSS Compass problem consists in estimating the
orientation of a baseline given a set of GNSS code and
phase observations. In order to achieve high degrees of
angular accuracy, it is necessary to solve for the integer-
valued ambiguities that are inherent to the carrier phase
observables. Once the ambiguities are fixed, the precise
data can be used for a wide range of demanding applica-
tions, ranging from terrestrial to maritime, air and space.
Different approaches have been developed for resolving
the GNSS Compass ambiguity resolution problem, see
e.g. [1]-[6]. We use the popular LAMBDA method [7]-
[8], which is an efficient implementation of the ILS (Inte-
ger Least-Squares) theory. In the Compass problem, two
antennae are assumed to be kept at a known and fixed dis-
tance: the information on the baseline length can then be
exploited for strengthening the observation model. A rig-
orous least-squares solution of the GNSS Compass prob-
lem, taking into account both the integerness of the ambi-
guities and the geometrical constraint on the baseline,

was given in [9]-[11], and experimental results were re-
ported in [12]-[16]: the new method was coined the Con-
strained (C-) LAMBDA method. The demonstrated im-
provement in the capacity of resolving the correct inte-
ger ambiguity vector for the constrained method comes at
the cost of a more complicated search strategy. As dis-
cussed in [10], under certain circumstances it is possible
to make use of a linearized approximation of the con-
strained method, for which the standard search routines
implemented in the LAMBDA method can still be used.
This approach works well as long as the baseline length
is longer than a certain threshold, which depends on the
quality of the observation data. In this contribution we
analyze the linearized approach, providing some experi-
mental results.

This contribution is structured as follows. In Section 2 we
introduce the unconstrained and the constrained GNSS
model. In Section 3 the unconstrained solution is given,



while in Section 4 we present the constrained solution.
The solution corresponding to the linearized model is dis-
cussed in Section 5. Finally, in Section 6 we present our
experimental results that are obtained from actual data of
a static ground experiment.

2 THE GNSS OBSERVABLES
If we track m + 1 satellites from 2 antennae, a set of 2m
Double Difference (DD) single-frequency, single-epoch
phase and code observations is available. These observ-
ables can be linked to the vectors of unknowns by means
of the linear(ized) observation equations

E(y) = Aa + Bb a ∈ Zn; b ∈ Rp

D(y) = Qyy (1)

where E(·) is the expectation operator, y is the vector of
DD code and carrier phase observables (order 2m), a con-
tains the n integer-valued ambiguities and b is the vec-
tor of remaining p real-valued unknowns. It is assumed
that the antennae are separated a short distance (within
hundreds of meters). We can therefore neglect the atmo-
spheric delays and assume that the three baseline coordi-
nates are the only real-valued unknowns (p = 3). A is
the matrix of carrier wavelengths, while B is the matrix
of line-of-sight vectors.
D(·) is the dispersion operator: the vector of observables
is assumed to be Gaussian-distributed, characterized by
the variance-covariance (v-c) matrix Qyy.
For the GNSS-compass problem, one can strengthen the
above unconstrained model by exploiting the knowledge
of the baseline length ||b|| = l. As a result we obtain the
constrained model

E(y) = Aa + Bb a ∈ Zn; b ∈ Rp; ‖b‖ = l

D(y) = Qyy (2)

Due to the nonlinear constraint ||b|| = l, the search for the
integer ambiguities needs to be modified, as illustrated in
Section 4.

3 THE UNCONSTRAINED MODEL SOLUTION
The set of linear equations (1) is solved by applying the
well-known ILS principle, the solution of which can be
obtained from the following three consecutive steps:

1) First the so-called float solution is obtained, i.e. the
least-squares solution of (1) disregarding the integer na-
ture of the ambiguities:[

â

b̂

]
= N−1

[
AT Q−1

yy y
BT Q−1

yy y

]
N =

[
AT Q−1

yy A AT Q−1
yy B

BT Q−1
yy A BT Q−1

yy B

]
(3)

The variance-covariance (v-c) matrix of the float solutions
is obtained by the inversion of the normal matrix N .

2) Then the integer ambiguity vector is estimated as

ǎΛ = arg min
a∈Zn

||â− a||2Qââ
(4)

where (.)T Q−1
ââ (.) = ||.||2Qââ

. The search for ǎΛ, which
minimizes the distance with respect to the float solution
â in the metric of Qââ, is performed by the LAMBDA
method.

3) Finally, the fixed baseline solution is obtained as

b̌Λ = b̂(ǎΛ) = (BT Q−1
yy B)−1BT Q−1

yy (y −AǎΛ) (5)

4 THE CONSTRAINED MODEL SOLUTION
The solution of (2) follows the same steps, although the
search for the integer vector is modified to incorporate the
constraint on the baseline length:

1) The float solutions and their v-c matrices are found as
in (3).

2) The sum-of-squares expression that has to be mini-
mized in the constrained case reads

min
a∈Zn,b∈R3,‖b‖=l

‖y −Aa−Bb‖2Qyy
= ||ê||2Qyy

+

+ min
a∈Zn

(
‖â− a‖2Qââ

+ min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)b̂(a)

)
(6)

where Qb̂(a)b̂(a) is the v-c matrix of b̂(a). Hence, the in-
teger ambiguities are now estimated as the solution of the
minimization problem

ǎCΛ = arg min
a∈Zn

(
‖â− a‖2Qââ

+ ‖b̂(a)− b̌′(a)‖2Qb̂(a)b̂(a)

)
(7)

with

b̌′(a) = arg min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)b̂(a)

The search for the integer minimizer (7) is more complex
than in the unconstrained case, because of two reasons:
firstly, the search space is no longer ellipsoidal; secondly,
the evaluation of the objective function implies the solu-
tion of a nonlinear least squares problem to extract the
vector b̌′(a), and this has to be done for each integer can-
didate.
It is shown in [13]-[15] how to perform such a search in
an efficient way, by employing one of two search algo-
rithms of the C-LAMBDA method, namely the Search
and Shrink approach and the Search and Expansion ap-
proach.



3) When the integer minimizer ǎCΛ is found, the con-
strained fixed baseline solution is obtained as

b̌CΛ = b̌′(ǎCΛ) = arg min
b∈R3,‖b‖=l

‖b̂(ǎCΛ)− b‖2Qb̂(a)b̂(a)

(8)

The constrained method achieves higher performance due
to the rigorous inclusion into the integer estimation pro-
cess of the nonlinear constraint, as given by the known
distance between the GNSS antennae. The better per-
formance in terms of higher success rates are reported in
[12]-[16].
The C-LAMBDA method is however more complex than
the standard LAMBDA method. It is therefore of inter-
est to analyze a linearized version for which the standard
search routines of the LAMBDA method can still be ap-
plied. This is discussed in the next section.

5 A QUADRATIC APPROXIMATION
If one uses linearization one obtains a quadratic approx-
imation to the objective function. The quadratic approx-
imation of the implicit ambiguity objective function was
derived in [10]. The solution of the linearized model fol-
lows the following three steps procedure:

1) Instead of the unconstrained float solution, the con-
strained float solution is now used. From the unconstrained
float baseline solution b̂, one first obtains the constrained
float baseline solution b̄, from which one can obtain the
constrained float ambiguity solution ā:

b̄ = arg min
||b||=l

||b̂− b||2Qb̂b̂

ā = (AT Q−1
yy A)−1AT Q−1

yy (y −Bb̄) (9)

2) The integer ambiguity solution is obtained as [10]:

ǎLΛ = arg min
a∈Zn

||ā− a||2
(∂2

aaF (ā))−1 (10)

Fig. 1. Placement of the receivers on field

where ∂2
aaF (ā) is the Hessian matrix of the ambiguity

objective function (7) evaluated at the point ā. This ex-
pression is a quadratic minimization problem for which
the routines of the standard LAMBDA method can be ap-
plied again.
The higher order terms that are neglected in the quadratic
approximation are bounded by a function inversely pro-
portional to the baseline length: the longer the baseline,
the smaller the neglected terms in the approximation, and
the better the performance of the method. This has a
straightforward geometrical interpretation: the non linear-
ity of the constrained method is due to the curved mani-
fold upon which the baseline solution is projected (the
sphere of radius l), and the longer the baseline, the smaller
is the curvature of the sphere, and thus the smaller the lo-
cal nonlinearity.

3) When the minimizer ǎLΛ is found, the baseline solu-
tion is derived as

b̌LΛ = arg min
b∈R3,‖b‖=l

‖b̂(ǎLΛ)− b‖2Qb̂(a)b̂(a)
(11)

Therefore, this approach only differ from the standard one
by the shape of the weight matrix in the ambiguity search
process and the derivation of the float solution. Purpose
of this paper is to find how well this linearized version
works compared to the standard LAMBDA and to the
Constrained LAMBDA methods: this is investigated in
the following section.

6 EXPERIMENTAL RESULTS
The linearized method described in the previous section
has been tested with data collected during a field test and
compared against the LAMBDA and C-LAMBDA meth-
ods. The performance indicator which has been looked
into is the single-frequency, single-epoch success rate, i.e.
the ratio of correctly fixed ambiguity vectors with respect

Fig. 2. Scheme of the experiment



(a) Session 0 (b) Session 1

(c) Session 2 (d) Session 3

Fig. 3. Number of satellites tracked at the different baselines

to the total number of epochs processed when only a sin-
gle epoch of data collected tracking a single frequency is
considered: this represents the most challenging scenario
to evaluate.

6.1 The experiment set-up
In order to test the linearized method, a field experiment
has been carried at CUT (Curtin University of Technol-
ogy) on 31 August 2009. Since the performance of the
tested linearized method strongly depend on the baseline
length, fourteen different baselines have been set up with
a common reference antennae. The antennae have been
placed at distances of 0.6-1-2-5-10-20-30-40-50-60-70-
80-90-100 meter from the reference one, lined up as shown
in Figure 1. Six receivers (Sokkia GSR 2700 ISX) were
used for the test, therefore 4 different measurements ses-
sions have been necessary to cover the fourteen different
cases, testing at each session 5 different baseline lengths
and keeping three (the reference and the furthest two) re-
ceivers on place when changing session, as to allow two
overlaps between consecutive sessions.
Figure 2 illustrates the placement of the receivers as func-
tion of the session (0 to 3); also the precise baseline lengths
measured on field are reported. The ground truth for the
experiment has been surveyed with a Sokkia Set1X total
station (2 mm distance measurement acuracy). The num-
ber of satellites tracked varied between 6 and 9, as shown

in figure 3, with PDOP values ranging between 2.2 and 3
for most of the time, with a peak of 16 for the first 800
epoch of the first session, due to a bad distribution of the
six tracked satellites in the sky.
Each session lasted about 40 minutes, and each of the
datasets collected was processed with the LAMBDA, the
Constrained LAMBDA (C-LAMBDA) and the Linearized
(LC-LAMBDA) methods.

6.2 Success rate performance
Table 1 reports the single-frequency, single-epoch success
rates of the three ambiguity estimators for all the sessions
examined. Figure 4 gives a graphical representation of
the results, illustrating the success rates as function of
the baseline lengths. Clearly visible in the graph are the
different overlaps between consecutive sessions: for the
receivers placed at 5m and 10m, 30m and 40m, 60 and
70m, two different experimental success rates are plotted
for each method.
According to the theory, the performance of the linearized
method increases with the baseline length, with a curve
which is relatively insensitive to the number of satellites
tracked. The results relative to the constrained (C-LAMBDA)
and standard (LAMBDA) methods are flatter, although
the latter shows a certain variability, due to the change of
number of tracked satellites between and within the ses-



Table 1. Single-frequency, single-epoch success rates for the LAMBDA , constrained LAMBDA, and Linearized methods.
Epochs Baseline length [m] LAMBDA C-LAMBDA LC-LAMBDA

Session 0 2079

0.5977 76.4791 98.5570 13.2275
1.0003 76.8158 99.6633 10.7263
1.9989 74.1703 97.7393 12.8908
4.9994 75.5171 99.0861 27.5132
10.0010 77.8259 99.0380 34.7763

Session 1 1924

4.9994 90.5925 99.8960 28.7440
10.0010 90.4886 99.5842 41.3721
20.0044 96.6216 99.8441 58.2121
30.0083 98.0769 99.9480 71.4137
40.0097 98.6486 99.9480 82.6403

Session 2 2050

30.0083 86.2439 99.4634 69.6098
40.0097 93.6098 99.9024 81.1220
50.0105 78.0488 99.7073 84.0488
60.0168 89.0244 99.9024 87.1707
70.0182 90.1463 96.0976 85.4634

Session 3 2060

60.0168 64.6602 98.8835 82.7184
70.0182 85.5825 99.8058 91.4563
80.0197 87.3786 99.8544 94.1748
90.0238 75.9223 99.1262 90.6311

100.0316 61.5904 99.8441 84.6117

sions. The C-LAMBDA method achieves almost a 100%
of sucess rate on all the datasets processed, showing a
large robustness. The LAMBDA method gives good re-
sults but it is less robust to the variation of the number
of satellites tracked than the other methods: this can be
easily observed comparing the sessions 0 and 1, where a
higher number of satellites tracked in session 1 effectively
increases the number of correctly fixed ambiguities. The
Linearized approach works well for baseline longer than

Fig. 4. Experimental single-epoch,single-frequency success rates for the three methods examined

few tens of meters, and it achieves the same or higher per-
formance than the standard LAMBDA method for base-
line lengths in the range of 40 to 60m.
The anomalities in the last part of the graph for the LAMBDA
and the Linearized method are due to the signal (not) re-
ceived from a setting satellite (PRN 14), which is totally
blocked by a building as seen from the receiver placed
at 100m (see 3d) and it suffers (although not blocked) a
large degradation for the receiver placed at 90m, as the



Fig. 5. Multipath combination (Mc=C1-4.092 L1 + 3.092 L2 ),
Session 3, Receiver 27 placed at 90m from the reference

multipath combination reported in figure 5 reveals. The
drop in success rate for the receiver placed at 60m is due
to a sudden drop of the number of satellites tracked from
the receiver placed at that distance, as reported in figure
3d.

7 CONCLUSIONS
It is studied in this contribution the performance achiev-
able with a quadratic approximation of the Constrained
Integer Least Squares. The linearization described has
the advantage of being of a reduced complexity and the
search for the integer minimizer can still be performed
in an ellipsoidal search space with the efficient routines
of the LAMBDA method. The method has an inherent
dependency on the baseline length, and a field test has
been performed in order to explore which are the condi-
tions which make the quadratic approximation of the con-
strained method preferable to the standard approach.
An experimental test focused on testing the method against
the LAMBDA and the Constrained LAMBDA for dif-
ferent baseline lengths: it is shown that the linearized
method has equal or better performance than the uncon-
strained method for baselines larger than few tens of me-
ters, and it theoretically tends to equal the performance of
the Constrained method for longer baselines.
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