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Abstract

Kalman filtering in its distributed information form is reviewed and applied to a network
of receivers tracking Global Navigation Satellite Systems (GNSS).We show, by employing
consensus-based data-fusion rules between GNSS receivers, how the consensus-based
Kalman filter (CKF) of individual receivers can deliver GNSS parameter solutions that
have a comparable precision performance as their network-derived, fusion center depen-
dent counterparts. This is relevant as in the near future the proliferation of low-cost
receivers will give rise to a significant increase in the number of GNSS users. With the
CKF or other distributed filtering techniques, GNSS users can therefore achieve high-
precision solutions without the need of relying on a centralized computing center.

Keywords: distributed filtering, consensus-based Kalman filter (CKF), global
navigation satellite systems (GNSS), GNSS networks, GNSS ionospheric observables

1. Introduction

Kalman filtering in its decentralized and distributed forms has received increasing attention in
the sensor network community and has been extensively studied in recent years, see e.g. [1–8].
While in the traditional centralized Kalman filter setup all sensor nodes have to send their
measurements to a computing (fusion) center to obtain the state estimate, in the distributed
filtering schemes the nodes only share limited information with their neighboring nodes (i.e. a
subset of all other nodes) and yet obtain state estimates that are comparable to that of the
centralized filter in a minimum-mean-squared-error sense. This particular feature of the dis-
tributed filters would potentially make the data communication between the nodes cost-
effective and develop the nodes’ capacity to perform parallel computations.

Next to sensor networks, distributed filtering can therefore benefit several other applications
such as formation flying of aerial vehicles [9], cooperative robotics [10] and disciplines that
concern the Global Navigation Satellite Systems (GNSS). The latter is the topic of this present

© The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and eproduction in any medium, provided the original work is properly cited.

DOI: 10.5772/intechopen.71138

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



contribution. The GNSS have been proven to be an efficient tool for determination of time
varying parameters that are of importance for Earth science disciplines like positioning, defor-
mation, timing and atmosphere [11, 12]. Parameter estimation in GNSS often relies on the data
processing of a network of receivers that collect measurements from visible GNSS satellites. In
the context of sensor networks, GNSS network receivers therefore serve as sensor nodes,
providing their data to a computing center, thereby computing network-based parameter
solutions in a (near) real-time manner. In this contribution we intend to demonstrate how
consensus algorithms [13] and the corresponding consensus-based Kalman filter (CKF), as a
popular means for distributed filtering, can take an important role in GNSS applications for
which a network of receivers are to be processed. Although each single receiver can run its
own local filter to deliver GNSS-derived solutions, the precision of such single-receiver solu-
tions is generally much lower than its network-derived counterparts, see e.g. [14, 15]. It will be
shown, through a CKF setup, that single-receiver parameter solutions can achieve precision
performances similar to that of their network-based versions, provided that a sufficient num-
ber of iterative communications between the neighboring receivers are established. The impor-
tance of such consensus-based single-receiver solutions is well appreciated in the light of the
recent development of new GNSS constellations as well as the proliferation of low-cost mass-
market receivers [16–18]. With the increase in the number and types of GNSS receivers, many
more GNSS users can establish their own measurement setup to determine parameters that
suit their needs. By taking recourse to the CKF or other distributed filtering techniques, GNSS
users can therefore potentially deliver high-precision parameter solutions without the need of
having a computing center.

The structure of this contribution is as follows. We first briefly review the principles of the
standard Kalman filter and its information form in Section 2. The additivity property of the
information filter that makes this filter particularly useful for distributed processing is also
highlighted. In Section 3 we discuss average consensus rules on which the sensor nodes agree
to fuse each other information. Different consensus protocols are discussed and a ‘probabilis-
tic’ measure for the evaluation of their convergence rates is proposed. Section 4 is devoted to
the CKF algorithmic steps. Its two time-scale nature is remarked and a three-step recursion for
evaluating the consensus-based error variance matrix is developed. In Section 5 we apply the
CKF theory to a small-scale network of GNSS receivers collecting ionospheric observables over
time. Conducting a precision analysis, we compare the precision of the network-based iono-
spheric solutions with those of their single-receiver and consensus-based counterparts. It is
shown how the CKF of each receiver responses to an increase in the number of iterative
communications between the neighboring nodes. Concluding remarks and future outlook are
provided in Section 6.

2. Kalman filtering

Consider a time series of observable random vectors y1,…, yt. The goal is to predict the
unobservable random state-vectors x1,…, xt. By the term ‘prediction’, we mean that the observ-
ables y1,…, yt are used to estimate realizations of the random vectors x1,…, xt. Accordingly, the
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means of the state-vectors x1,…, xt can be known, while their unknown realizations still need
to be guessed (predicted) through observed realizations of y1,…, yt. In the following, to show
on which set of observables prediction is based, we use the notation bxt∣τ as the predictor of xt

when based on y τ½ � ¼ yT1 ;…; yTτ
� �T . The expectation, covariance and dispersion operators are

denoted by E :ð Þ, C :; :ð Þ and D :ð Þ, respectively. The capital Q is reserved for (co)variance matri-
ces. Thus C xt; yτ

� � ¼ Qxtyτ
.

2.1. The Kalman filter standard assumptions

To predict the state-vectors in an optimal sense, one often uses the minimum mean squared
error (MMSE) principle as the optimality criterion, see e.g., [19–25]. In case no restrictions are
placed on the class of predictors, the MMSE predictor bxt∣τ is given by the conditional mean

E xtjy τ½ �
� �

, known as the Best Predictor (BP). The BP is unbiased, but generally nonlinear, with

exemptions, for instance in the Gaussian case. In case xt and y τ½ � are jointly Gaussian, the BP

becomes linear and identical to its linear counterpart, i.e. the Best Linear Predictor (BLP)

bxt∣τ ¼ E xtð Þ þQxty τ½ �
Q�1

y τ½ �y τ½ �
y τ½ � � E y τ½ �

� �n o
(1)

Eq. (1) implies that (1) the BLP is unbiased, i.e. E bxt∣τ� � ¼ E xtð Þ, and that (2) the prediction error

of a BLP is always uncorrelated with observables on which the BLP is based, i.e. C xt � bxt∣τ,�
y τ½ �Þ ¼ 0. These two basic properties can be alternatively used to uniquely specify a BLP [26].

The Kalman filter is a recursive BP (Gaussian case) or a recursive BLP. A recursive predictor,
say bxt∣t, can be obtained from the previous predictor bxt∣t�1 and the newly collected observable
vector yt. Recursive prediction is thus very suitable for applications that require real-time
determination of temporally varying parameters. We now state the standard assumptions that
make the Kalman filter recursion feasible.

The dynamic model: The linear dynamic model, describing the time-evolution of the state-
vectors xt, is given as

xt ¼ Φt, t�1 xt�1 þ dt, t ¼ 1, 2,… (2)

with

E x0ð Þ ¼ x0∣0, D x0ð Þ ¼ Qx0x0 (3)

and

E dtð Þ ¼ 0, C dt; dsð Þ ¼ St δt, s, C dt; x0ð Þ ¼ 0 (4)

for the time instances t, s ¼ 1, 2,…, with δt, s being the Kronecker delta. The nonsingular matrix
Φt, t�1 denotes the transition matrix and the random vector dt is the system noise. The system
noise dt is thus assumed to have a zero mean, to be uncorrelated in time and to be uncorrelated
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with the initial state-vector x0. The transition matrix from epoch s to t is denoted as Φt, s. Thus
Φ�1

t, s ¼ Φs, t and Φt, t ¼ I (the identity matrix).

The measurement model: The link between the observables yt and the state-vectors xt is assumed
given as

yt ¼ Atxt þ εt, t ¼ 1, 2,… (5)

with

E εtð Þ ¼ 0, C εt; εsð Þ ¼ Rt δt, s, C εt; x0ð Þ ¼ 0, C εt; dsð Þ ¼ 0 (6)

for t, s ¼ 1, 2,…, with At being the known design matrix. Thus the zero-mean measurement
noise εt is assumed to be uncorrelated in time and to be uncorrelated with the initial state-
vector x0 and the system noise dt.

2.2. The three-step recursion

Initialization: As the mean of x0 is known, the best predictor of x0 in the absence of data is the
mean E x0ð Þ ¼ x0∣0. Hence, the initialization is simply given by

bx0∣0 ¼ x0∣0, P0∣0 ¼ Qx0x0 (7)

That the initial error variance matrix P0∣0 ¼ D x0 � bx0∣0� �
is identical to the variance matrix Qx0x0

follows from the equality D x0 � x0∣0
� � ¼ D x0ð Þ.

Time update: Let us choose Φt, t�1bxt�1∣t�1 as a candidate for the BLP bxt∣t�1. According to Eq. (1),
the candidate would be the BLP if it fulfills two conditions: (1) it must be unbiased and (2) it
must have a prediction error uncorrelated with the previous data y t�1½ �. The first condition,

i.e. EðΦt, t�1bxt�1∣t�1Þ ¼ E xtð Þ, follows from Eq. (2) and the equalities E bxt�1∣t�1
� � ¼ E xt�1ð Þ and

E dtð Þ ¼ 0. The second condition, i.e. Cðxt � Φt, t�1bxt�1∣t�1; y t�1½ �Þ ¼ 0, follows from the fact that

the prediction error xt � Φt, t�1bxt�1∣t�1 is a function of the previous BLP prediction error
xt�1 � bxt�1∣t�1 and the system noise dt, i.e. (cf. 2)

xt � Φt, t�1bxt�1∣t�1 ¼ Φt, t�1 xt�1 � bxt�1∣t�1
� �þ dt, (8)

that are both uncorrelated with the previous data y t�1½ �. Hence, the time update is given by

bxt∣t�1 ¼ Φt, t�1bxt�1∣t�1, Pt∣t�1 ¼ Φt, t�1Pt�1∣t�1Φ
T
t, t�1 þ St (9)

The error variance matrix Pt∣t�1 ¼ D xt � bxt∣t�1
� �

follows by applying the covariance propaga-

tion law to (8), together with C xt�1 � bxt�1∣t�1; dt
� � ¼ 0.
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Measurement update: In the presence of new data yt, one may yet offer bxt∣t�1 as a candidate for
the BLP bxt∣t. Such a candidate fulfills the unbiasedness condition E bxt∣t�1

� � ¼ E xtð Þ, but not
necessarily the zero-correlation condition, that is, Cðxt � bxt∣t�1, y t½ �Þ 6¼ 0. Note, however, that

Cðxt � bxt∣t�1, y t�1½ �Þ ¼ 0. Thus the zero-correlation condition Cðxt � bxt∣t�1, y t½ �Þ ¼ 0 would have

been met if the most recent data yt of y t½ � ¼ yTt�1½ �; y
T
t

h iT
would be a function of the previous

data y t�1½ �, thereby fully predicted by y t�1½ �. Since an observable is its own best predictor, this

implies that yt ¼ Atbxt∣t�1, where Atbxt∣t�1 is the BLP of yt. But this would require the zero-mean
quantity vt ¼ yt � Atbxt∣t�1 to be identically zero which is generally not the case. It is therefore
the presence of vt that violates the zero-correlation condition. Note that vt is a function of the
prediction error xt � bxt∣t�1 and the measurement noise εt, i.e. (cf. 5)

vt ¼ At xt � bxt∣t�1
� �þ εt, (10)

that are both uncorrelated with y t�1½ �. Therefore, vt cannot be predicted by the previous data

y t�1½ �, showing that vt contains truly new information. That is why vt is sometimes referred to as

the innovation of yt, see e.g. [27–29]. We now amend our earlier candidate bxt∣t�1 by adding a
linear function of vt to it. It reads bxt∣t ¼ bxt∣t�1 þ Ktvt, with Kt being an unknown matrix to be
chosen such that the zero-correlation condition is met. Such a matrix, known as the Kalman
gain matrix, is uniquely specified by

Kt ¼ Pt∣t�1AT
t Q

�1
vtvt ⇔ C xt � bxt∣t�1 � Ktvt; yt

� � ¼ 0 (11)

since C xt � bxt∣t�1; yt
� � ¼ Pt∣t�1AT

t and C vt; yt
� � ¼ Qvtvt . The measurement update reads then

bxt∣t ¼ bxt∣t�1 þ Ktvt, with Pt∣t ¼ Pt∣t�1 � KtQvtvtK
T
t (12)

The error variance matrix Pt∣t ¼ D xt � bxt∣t� �
follows by an application of the covariance prop-

agation law, together with C xt � bxt∣t�1; vt
� � ¼ Pt∣t�1AT

t . Application of the covariance propaga-
tion law to (10) gives the variance matrix of vt as follows

Qvtvt ¼ AtPt∣t�1AT
t þ Rt (13)

since C xt � bxt∣t�1; εt
� � ¼ 0.

2.3. A remark on the filter initialization

In the derivation of the Kalman filter one assumes the mean of the random initial state-vector
x0, in Eq. (3), to be known, see e.g. [30–37]. This is because of the BLP structure (1) that needs
knowledge of the means E xtð Þ and Eðy τ½ �Þ. Since in many, if not most, applications the means of

the state-vectors x1,…, xt are unknown, such derivation is therefore not appropriate. As shown
in Ref. [38], one can do away with this need to have both the initial mean x0∣0 and variance
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matrix Qx0x0 , given in Eq. (3), known. The corresponding three-step recursion would then
follow the Best Linear Unbiased Prediction (BLUP) principle and not that of the BLP. The
BLUP is also a MMSE predictor, but within a more restrictive class of predictors. It replaces
the means E xtð Þ and Eðy τ½ �Þ by their corresponding Best Linear Unbiased Estimators (BLUEs).

Within such BLUP recursion, the initialization Eq. (7) is revised and takes place at time
instance t ¼ 1 in the presence of the data y1. Provided that matrix A1 is of full column rank,
the predictor bx1∣1 follows from solving the normal equations

N1bx1∣1 ¼ r1, with N1 ¼ AT
1R

�1
1 A1, r1 ¼ AT

1R
�1
1 y1 (14)

Thus

bx1∣1 ¼ N�1
1 r1, and P1∣1 ¼ N�1

1 (15)

The above error variance matrix P1∣1 is thus not dependent on the variance matrix of x1, i.e.

Qx1x1 ¼ Φ1,0Qx0x0 Φ
T
1,0 þ S1. This is, however, not the case with the variance matrix of the

predictor bx1∣1 itself, i.e. Qbx1∣1bx1∣1
¼ D bx1∣1� �

. This variance matrix is given by [38]

Qbx1∣1bx1∣1
¼ Qx1x1 þ P1∣1 (16)

showing that P1∣1 6¼ Qbx1∣1bx1∣1
. Matrices Pt∣t and Qbxt∣tbxt∣t

(t ¼ 1, 2,…) are used for two different

purposes. The error variance matrix Pt∣t ¼ D xt � bxt∣t� �
is a measure of ‘closeness’ of bxt∣t to its

target random vector xt, thereby meant to describe the ‘quality’ of prediction, i.e. precision of
the prediction error xt � bxt∣t� �

. The variance matrix Qbxt∣tbxt∣t
¼ D bxt∣t� �

however, is a measure of

closeness of bxt∣t to the nonrandom vector E xtð Þ, as D bxt∣t� � ¼ DðE xtð Þ � bxt∣tÞ. Thus Qbxt∣tbxt∣t
does

not describe the quality of prediction, but instead the precision of the predictor bxt∣t.
The MMSE of the BLUP recursion is never smaller than that of the Kalman filter, as the Kalman
filter makes use of additional information, namely, the known mean x0∣0 and variance matrix
Qx0x0 . When the stated information is available, the BLUP recursion is shown to encompass the
Kalman filter as a special case [39]. In the following we therefore assume that the means of the
state-vectors x1,…, xt are unknown, a situation that often applies to GNSS applications.

2.4. Filtering in information form

The three-step recursion presented in Eqs. (7), (9) and (12) concerns the time-evolution of the
predictor bxt∣t and the error variance matrix Pt∣t. As shown in Eq. (15), both P1∣1 and bx1∣1 can be

determined by the normal matrix N1 ¼ P�1
1∣1 and the right-hand-side vector r1 ¼ P�1

1∣1bx1∣1. One

can therefore alternatively develop recursion concerning the time-evolution of P�1
t∣t and P�1

t∣t bxt∣t.
From a computational point of view, such recursion is found to be very suitable when the
inverse-variance or information matrices S�1

t and R�1
t serve as input rather than the variance

matrices St and Rt. To that end, one may define [34]
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information vector it∣τ : ¼ P�1
t∣τbxt∣τ and information matrix I t∣τ : ¼ P�1

t∣τ (17)

Given the definition above, the information filter recursion concerning the time-evolution of it∣t
and I t∣t would then follow from the recursion Eqs. (15), (9) and (12), along with the following
matrix-inversion equalities

Time-update : ðΦt, t�1Pt�1∣t�1Φ
T
t, t�1 þ StÞ�1 ¼ Mt �MtðMt þ S�1

t Þ�1Mt

Measurement-update : ðPt∣t�1 � Pt∣t�1AT
t QvtvtAtPt∣t�1Þ�1 ¼ P�1

t∣t�1 þ AT
t R

�1
t At

(18)

where Mt ¼ ΦT
t�1, t P

�1
t�1∣t�1Φt�1, t.

The algorithmic steps of the information filter are presented in Figure 1. In the absence of data,
the filter is initialized by the zero information i1∣0 ¼ 0 and I1∣0 ¼ 0. In the presence of the data
yt, the corresponding normal matrix Nt and right-hand-side vector rt are added to the time
update information it∣t�1 and I t∣t�1 to obtain the measurement update information it∣t and I t∣t.

Figure 1. Algorithmic steps of the information filter recursion concerning the time-evolution of the information
vector it∣t and matrix I t∣t .
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The transition matrix Φt, t�1 and inverse-variance matrix S�1
t would then be used to time

update the previous information it�1∣t�1 and I t�1∣t�1.

Singular matrix St: In the first expression of Eq. (18) one assumes the variance matrix St to be
nonsingular and invertible. There are, however, situations where some of the elements of the
state-vector xt are nonrandom, i.e., the corresponding system noise is identically zero. As a
consequence, the variance matrix St becomes singular and the inverse-matrix S�1

t does not
exist. An example of such concerns the presence of the GNSS carrier-phase ambiguities in the
filter state-vector which are treated constant in time. In such cases the information time update

in Figure 1 must be generalized so as to accommodate singular variance matrices St. Let ~St be
an invertible sub-matrix of St that has the same rank as that of St. Then there exists a full-
column rank matrix Ht such that

St ¼ Ht ~StHT
t (19)

Matrix Ht can be, for instance, structured by the columns of the identity matrix I

corresponding to the columns of St on which the sub-matrix ~St is positioned. The special case

St ¼
~St 0
0 0

" #
¼ I

0

� 	
~St

I
0

� 	T
) Ht ¼

I
0

� 	
, (20)

shows an example of the representation (19). With Eq. (19), a generalization of the time update
(Figure 1) can be shown to be given by

I t∣t�1 ¼ Mt �MtHt HT
t MtHt þ ~S

�1
t

h i�1
HT

t Mt (21)

Thus instead of S�1
t , the inverse-matrix ~S�1

t and Ht are assumed available.

2.5. Additivity property of the information measurement update

As stated previously, the information filter delivers outcomes equivalent to those of the Kalman
filter recursion. Thus any particular preference for the information filter must be attributed to the
computational effort required for obtaining the outcomes. For instance, if handling matrix inver-
sion requires low computational complexity when working with the input inverse-matrices S�1

t

and R�1
t , the information filter appears to be more suitable. In this subsection we will highlight

yet another property of the information filter that makes this recursion particularly useful for
distributed processing.

As shown in Figure 1, the information measurement update is additive in the sense that the
measurement information Nt and rt is added to the information states I t∣t�1 and it∣t�1. We
now make a start to show how such additivity property lends itself to distributed filtering. Let
the measurement model Eq. (5) be partitioned as
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yt ¼ Atxt þ εt )

y1, t

⋮

yi, t

⋮

yn, t

26666666664

37777777775
¼

A1, t

⋮

Ai, t

⋮

An,t

2666666664

3777777775
xt þ

ε1, t

⋮

εi, t

⋮

εn, t

2666666664

3777777775
, t ¼ 1, 2,… (22)

Accordingly, the observable vector yt is partitioned into n sub-vectors yi, t (i ¼ 1,…, n), each
having its own design matrix Ai, t and measurement noise vector εi, t. One can think of a
network of n sensor nodes where each collects its own observable vector yi, t, but aiming to
determine a common state-vector xt. Let us further assume that the nodes collect observables
independently from one another. This yields

C εi, t; εj, t
� � ¼ Ri, t δi, j, for i, j ¼ 1,…, n, and t ¼ 1, 2,… (23)

Thus the measurement noise vectors εi, t (i ¼ 1,…, n) are assumed to be mutually uncorrelated.

With the extra assumption Eq. (23), the normal matrix Nt ¼ AT
t R

�1
t At and right-hand-side

vector rt ¼ AT
t R

�1
t yt can then be, respectively, expressed as

Nt ¼
Xn
i¼1

Ni, t, and rt ¼
Xn
i¼1

ri, t (24)

where

Ni, t ¼ AT
i, tR

�1
i, t Ai, t, and ri, t ¼ AT

i, tR
�1
i, t yi, t (25)

According to Eq. (24), the measurement information of each node, say Ni, t and ri, t, is individ-
ually added to the information states I t∣t�1 and it∣t�1, that is

I t∣t ¼ I t∣t�1 þ
Xn
i¼1

Ni, t, it∣t ¼ it∣t�1 þ
Xn
i¼1

ri, t (26)

Now consider the situation where each node runs its own local information filter, thus having
its own information states I i, t∣t and ii, t∣t (i ¼ 1,…, n). The task is to recursively update the local
states I i, t∣t and ii, t∣t in a way that they remain equal to their central counterparts I t∣t and it∣t
given in Eq. (26). Suppose that such equalities hold at the time update, i.e. I i, t∣t�1 ¼ I t∣t�1 and
ii, t∣t�1 ¼ it∣t�1. Given the number of contributing nodes n, each node just needs to be provided
with the average quantities

Nt ¼ 1
n

Xn
i¼1

Ni, t, and rt ¼ 1
n

Xn
i¼1

ri, t (27)
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The local states I i, t∣t�1 and ii, t∣t�1 would then be measurement updated as (cf. 26)

I i, t∣t ¼ I i, t∣t�1 þ nNt, ii, t∣t ¼ ii, t∣t�1 þ nrt (28)

that are equal to the central states I t∣t and it∣t, respectively. In this way one has multiple
distributed local filters i ¼ 1,…, n, where each recursively delivers results identical to those of
a central filter.

To compute the average quantities Nt and rt, node i may need to receive all other information
Nj, t and rj, t (j 6¼ i). In other words, node i would require direct connections to all other nodes
j 6¼ i, a situation that makes data communication and processing power very expensive (par-
ticularly for a large number of nodes). In the following cheaper ways of evaluating the
averages Nt and rt are discussed.

3. Average consensus rules

In the previous section, we briefly discussed the potential applicability of the information filter
as a tool for handling the measurement model Eq. (22) in a distributed manner. With the
representation Eq. (28) however, one may be inclined to conclude that such applicability is
limited to the case where the nodes i ¼ 1,…, n, have ‘direct’ communication connections to one
another in order to receive/send their measurement information Ni, t and ri, t (i ¼ 1,…, n).

Instead of having direct connections, the idea is now to relax such a stringent requirement by
assuming that the nodes are linked to each other at least through a ‘path’ so that information
can flow from each node to all other nodes. It is therefore assumed that each node along the
path plays the role of an agent transferring information to other nodes. To reach the averages
Nt and rt, the nodes would then agree on specific ‘fusion rules’ or consensus protocols, see e.g. [6,
8, 40]. Note that each node exchanges information with neighboring nodes (i.e. those to which
the node has direct connections) and not the entire nodes. Therefore, a repeated application of
the consensus protocols is required to be carried out. The notion is made precise below.

3.1. Communication graphs

The way the nodes interact with each other to transfer information is referred to as the
interaction topology between the nodes. The interaction topology is often described by a
directed graph whose vertices and edges, respectively, represent the nodes and communica-
tion links [4]. The interaction topology may also undergo a finite number of changes over
sessions k ¼ 1,…, ko. In case of one-way links, the directions of the edges face toward the
receiving nodes (vertices). Here we assume that the communication links between the nodes
are two-way, thus having undirected (or bidirectional) graphs. Examples of such representing a
network of 20 nodes with their interaction links are shown in Figure 2. Let an undirected
graph at session k be denoted by Gk ¼ V; Ekð Þ where V ¼ 1;…; nf g is the vertex set and
Ek ⊂ i; jð Þj i; j∈Vf g is the edge set. We assume that the nodes remain unchanged over time,
that is why the subscript k is omitted for V. This is generally not the case with their interaction

Kalman Filters - Theory for Advanced Applications282



links though, i.e. the edge set Ek depends on k. As in Figure 2 (b), the number of links between
the nodes can be different for different sessions k ¼ 1,…, ko. Each session represents a graph
that may not be connected. In a ‘connected’ graph, every vertex is linked to all other vertices at
least through one path. In order for information to flow from each node to all other nodes, the
union of the graphs Gk (k ¼ 1,…, ko), i.e.

G ¼ V; Eð Þ with E ¼ ⋃
ko

k¼1
Ek ko : a finite numberð Þ (29)

is therefore assumed to be connected. We define the neighbors of node i as those to which the
node i has direct links. For every session k, they are collected in the set N i, k ¼ j j j; ið Þ∈ Ekf g.
For instance for network (a) of Figure 2, we have only one session, i.e. ko ¼ 1, in which
N 2,1 ¼ 1; 3; 4; 5f g represents the neighbors of node 2. In case of network (b) however, we have
different links over four sessions, i.e. ko ¼ 4. In this case, the neighbors of node 2 are given by
four sets: N 2,1 ¼ 5f g in session 1 (red), N 2,2 ¼ fg in session 2 (yellow), N 2,3 ¼ 4f g in session 3
(green) and N 2,4 ¼ fg in session 4 (blue).

3.2. Consensus protocols

Given the right-hand-vector ri, t, suppose that node i aims to obtain the average rt for which all
other vectors rj, t (∀j 6¼ i) are required to be available (cf. 27). But the node i only has access to
those of its neighbors, i.e. the vectors rj, t (j∈N i, k). For the first session k ¼ 1, it would then
seem to be reasonable to compute a weighted-average of the available vectors, i.e.

ri, t 1ð Þ ¼
X

j∈ i;N i,1f g
wij 1ð Þrj, t (30)

as an approximation of rt, where the scalars wij 1ð Þ ( j∈ i;N i,1f g) denote the corresponding
weights at session k ¼ 1. Now assume that all other nodes j 6¼ i agree to apply the fusion rule

Figure 2. Communications graphs of 20 sensor nodes. The edges represent two-way communication links between the
nodes. (a) Network with 49 links. (b) Network with different numbers of links over four sessions: 7 links in session 1 (R), 6
links in session 2 (Y), 8 links in session 3 (G) and 7 links in session 4 (B).
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Eq. (30) to those of their own neighbors. Thus the neighboring nodes j∈N i, k also have their own
weighted-averages rj, t 1ð Þ. But they may have access to those to which the node i has no direct
links. In other words, the weighted-averages rj, t 1ð Þ (j∈N i,1) contain information on the nodes
to which the node i has no access. For the next session k ¼ 2, it is therefore reasonable for the
node i to repeat the fusion rule Eq. (30), but now over the new vectors rj, t 1ð Þ (j∈ i;N i,2f g), aiming
to improve on the earlier approximation ri, t 1ð Þ. This yields the following iterative computations

ri, t kð Þ ¼
X

j∈ i;N i, kf g
wij kð Þrj, t k� 1ð Þ, k ¼ 1, 2,… (31)

with rj, t 0ð Þ : ¼ rj, t. Choosing a set of weights wij kð Þ, the nodes i ¼ 1,…, n agree on the consen-
sus protocol (31) to iteratively fuse their information vectors ri, t kð Þ. Here and in the following,
we use the letter ‘k’ for the ‘session number’ k ¼ 1,…, ko (cf. 29) and for the ‘number of iterative
communications’ k ¼ 1,…, kn (cf. 34). The maximum iteration kn is assumed to be not smaller
than the maximum session number ko, i.e. kn ≥ ko.

The question that now comes to the fore is how to choose the weights wij kð Þ such that the
approximation ri, t kð Þ gets close to rt through the iteration Eq. (31). More precisely, the stated
iteration becomes favorable if ri, t kð Þ ! rt when k ! ∞ for all nodes i ¼ 1,…, n. To address this
question, we use a multivariate formulation. Let p be the size of the vectors ri, t (i ¼ 1,…, n). We

define the higher-dimensioned vector r ¼ rT1, t;…; rTn, t
h iT

. The multivariate version of Eq. (31)

reads then

r1, t kð Þ
⋮

ri, t kð Þ
⋮

rn, t kð Þ

26666664

37777775 ¼

w11 kð ÞIp … w1i kð ÞIp … w1n kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wi1 kð ÞIp … wii kð ÞIp … win kð ÞIp
⋮ ⋱ ⋮ ⋱ ⋮

wn1 kð ÞIp … wni kð ÞIp … wnn kð ÞIp

26666664

37777775

r1, t k� 1ð Þ
⋮

ri, t k� 1ð Þ
⋮

rn, t k� 1ð Þ

26666664

37777775, k ¼ 1, 2,… (32)

or

r kð Þ ¼ W kð Þ⊗ Ip
� �

r k� 1ð Þ, k ¼ 1, 2,… (33)

The n� n weight matrix W kð Þ is structured by wij kð Þ (j∈ i;N i, kf g) and wij kð Þ ¼ 0.

(j∉ i;N i, kf g). The symbol ⊗ is the Kronecker matrix product [41]. According to Eq. (33), after
kn iterations the most recent iterated vector r knð Þ is linked to the initial vector r 0ð Þ byQkn

k¼1 W kð Þ⊗ Ip
h i

r 0ð Þ. Thus the vectors ri, t kð Þ (i ¼ 1,…, n) converge to rt when

L knð Þ≔
Ykn
k¼1

W kð Þ ! 1
n
eneTn , as kn ! ∞ (34)

where the n-vector en contains ones. If the condition Eq. (34) is met, the set of nodes 1;…; nf g
can asymptotically reach average consensus [4]. It can be shown that (34) holds if the weight
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matrices W kð Þ (k ¼ 1,…, ko) have bounded nonnegative entries with positive diagonals, i.e.
wij kð Þ ≥ 0 and wii kð Þ > 0, having row- and column-sums equal to one, i.e.

Pn
j¼1 wij kð Þ ¼ 1 andPn

i¼1 wij kð Þ ¼ 1 (i, j ¼ 1,…, n), see e.g. [3, 5, 40, 42, 43].

Examples of such consensus protocols are given in Table 1. As shown, the weights form a
symmetric weight matrix W kð Þ, i.e. wji kð Þ ¼ wij kð Þ. In all protocols presented, self-weights
wii kð Þ are chosen so that the condition

Pn
j¼1 wij kð Þ ¼ 1 is satisfied. The weights of Protocols 1

and 2 belong to the class of ‘maximum-degree’ weights, while those of Protocol 3 are referred
to as ‘Metropolis’ weights [8]. The weights of Protocols 1 and 3 are driven by the degrees
(number of neighbors) of nodes i ¼ 1,…, n, denoted by dgi kð Þ ¼ N i, k. For instance, in network
(a) of Figure 2we have dg1 1ð Þ ¼ 4 as node 1 has 4 neighbors, while dg14 1ð Þ ¼ 7 as node 14 has 7
neighbors. Protocol 4 is only applicable to networks like (b) in Figure 2, i.e. when each node
has at most one neighbor at a session [4]. In this case, each node exchanges its information to
just one neighbor at a session. Thus for two neighboring nodes i and j we have
wii kð Þ ¼ wjj kð Þ ¼ wij kð Þ ¼ 0:5, each averaging ri, t k� 1ð Þ and rj, t k� 1ð Þ to obtain ri, t kð Þ ¼ rj, t kð Þ.
To provide insight into the applicability of the protocols given in Table 1, we apply them to the
networks of Figure 2. Twenty values (scalars), say ri (i ¼ 1,…, 20), are generated whose aver-
age is equal to 5, i.e. r ¼ 5. Each value is assigned to its corresponding node. For network (a),
Protocols 1, 2 and 3 are separately applied, whereas Protocol 4 is only applied to network (b).
The corresponding results, up to 30 iterations, are presented in Figure 3. As shown, the
iterated values ri kð Þ (i ¼ 1,…, 20) get closer to their average (i.e. r ¼ 5), the more the number
of iterative communications.

3.3. On convergence of consensus states

Figure 3 shows that the states ri, t kð Þ (i ¼ 1,…, n) converge to their average rt, but with different
rates. The convergence rate depends on the initial states ri, t 0ð Þ ¼ ri, t and on the consensus
protocol employed. From the figure it seems that the convergence rates of Protocols 1 and 3
are about the same, higher than those of Protocols 2 and 4. Note that the stated results are

Protocols wij kð Þ i; j

 �

∈ Ek
� �

wii kð Þ

Protocol 1 1
max

u ∈ 1;…;nf g
dgu kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 2 1
n 1�

X
u 6¼i

wiu kð Þ

Protocol 3 1
1þmax dgi kð Þ;dgj kð Þf g 1�

X
u 6¼i

wiu kð Þ

Protocol 4 1
2 1�

X
u 6¼i

wiu kð Þ

otherwise wij kð Þ ¼ 0

The degree (number of neighbors) of node i is denoted by dgi kð Þ ¼ #N i, k. Protocol 4 is only applicable when each node has
at most one neighbor at a session.

Table 1. Examples of average-consensus protocols forming the weights wij kð Þ in Eq. (31).
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obtained on the basis of specific ‘realizations’ of ri, t (i ¼ 1,…, n). Consider the states ri, t to be
random vectors. In that case, can the results be still representative for judging the convergence
performances of the protocols? To answer this question, let us define the difference vectors

dri, t kð Þ ¼ ri, t kð Þ � rt that are collected in the higher-dimensioned vector dr kð Þ ¼ drT1, t kð Þ;…;
h

drTn, t kð Þ�T . The more the number of iterations, the smaller the norm of dr kð Þ becomes. According

to Eq. (33), after kn iterations the difference vector dr knð Þ is linked to r ¼ rT1, t;…; rTn, t
h iT

through

dr knð Þ ¼ L knð Þ � 1
n
eneTn

� 
⊗ Ip

� 	
r (35)

Now let the initial states ri, t have the same mean and the same variance matrix D ri, tð Þ ¼ Q
(i ¼ 1,…, n), but mutually uncorrelated. An application of the covariance propagation law to
(35), together with L knð Þen ¼ en, gives

D dr knð Þð Þ ¼ L2 knð Þ � 1
n
eneTn

� 
⊗Q (36)

Thus the closer the squared matrix L2 knð Þ to 1=nð ÞeneTn , the smaller the variance matrix Eq. (36)
becomes. In the limit when kn ! ∞, the stated variance matrix tends to zero. This is what one
would expect, since dr knð Þ ! 0. Under the conditions stated in Eq. (34), matrices W kð Þ have
λn ¼ 1 as the largest absolute value of their eigenvalues [42]. A symmetric weight matrix W
can then be expressed in its spectral form as

W ¼
Xn�1

i¼1

λi uiuTi þ 1
n
eneTn (37)

Figure 3. Performances of protocols 1, 2 and 3 (network (a) of Figure 2) and protocols 4 (network (b)) in delivering the
average of 20 values (scalars). The iterated values get closer to their average (i.e. r ¼ 5), the more the number of iterative
communications.
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with the eigenvalues λ1 ≤… ≤λn�1 < λn ¼ 1, and the corresponding orthogonal unit eigenvec-
tors u1,…, un�1, un ¼ 1=

ffiffiffi
n

pð Þen. By a repeated application of the protocol W , we get
L knð Þ ¼ Wkn . Substitution into Eq. (36), together with Eq. (37), gives finally

D dr knð Þð Þ ¼
Xn�1

i¼1

λ2kn
i uiuTi

 !
⊗Q ≤λ2kn

n�1 In ⊗Q½ � (38)

The above equation shows that the entries of the variance matrix (36) are largely driven by the
second largest eigenvalue of W , i.e. λn�1. The smaller the scalar ∣λn�1∣, the faster the quantity

λ2kn
n�1 tends to zero, as kn ! ∞. The scalar ∣λn�1∣ is thus often used as a measure to judge the

convergence performances of the protocols [7]. For the networks of Figure 2, ∣λn�1∣ of Protocols
1, 2 and 3 are about 0.92, 0.97, 0.91, respectively. As Protocol 3 has the smallest ∣λn�1∣, it is
therefore expected to have the best performance. Note, in Protocol 4, that the weight matrix
W kð Þ varies in every session, the performance of which cannot be judged by a single eigen-
value λn�1. One can therefore think of another means of measuring the convergence perfor-
mance. Due to the randomness of the information vectors ri, t (i ¼ 1,…, n), one may propose
‘probabilistic’ measures such as

Prob max
i

dri, t knð Þk kQ ≤ q
� 

, q > 0ð Þ (39)

to evaluate the convergence rates of the protocols, where dri, tk k2Q :¼ drTi, tQ
�1dri, t. Eq. (39) refers

to the probability that the maximum-norm of the difference vectors dri, t knð Þ ¼ ri, t knð Þ � rt
(i ¼ 1,…, n) is not larger than a given positive scalar q for a fixed number of iterations kn. The
higher the probability Eq. (39), the better the performance of a protocol. For the scalar case
Q ¼ σ2, Eq. (39) is reduced to

Prob max
i

jdri, t knð Þj ≤ qσ
� 

(40)

which is the probability that the absolute differences ∣dri, t knð Þ∣ (i ¼ 1,…, n) are not larger than q
times the standard-deviation σ. For the networks of Figure 2, 100,000 normally-distributed

vectors as samples of r ¼ r1;…; r20½ �T are simulated to evaluate the probability (40). The results
for Protocols 1, 2, 3 and 4 are presented in Figure 4. The stated probability is plotted as a
function of q for three numbers of iterative communications kn ¼ 10, 20 and 30. As shown,
Protocol 3 gives rise to highest probabilities, while Protocol 2 delivers lowest probabilities.
After 10 iterations, the probability of having absolute differences smaller than one-fifth of the
standard-deviation σ (i.e. q ¼ 0:2) is about 80% for Protocol 1, whereas it is less than 5% for
Protocol 2. After 30 iterations, the stated probability increases to 80% for Protocol 2, but close
to 100% for Protocols 1 and 3.

Figure 4 demonstrates that the convergence performance of Protocol 4 is clearly better than
that of Protocol 2, as it delivers higher probabilities (for the networks of Figure 2). Such a
conclusion however, cannot be made on the basis of the results of Figure 3. This shows that
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results obtained on the basis of specific ‘realizations’ of ri, t (i ¼ 1,…, n) are not necessarily
representative.

4. Consensus-based Kalman filters

4.1. Two time-scale approach

In Section 2.5 we discussed how the additivity property of the measurement update Eq. (26)
offers possibilities for developing multiple distributed local filters i ¼ 1,…, n, each delivering
local states I i, t∣t and ii, t∣t equal to their central counterparts I t∣t and it∣t. In doing so, each
node has to evaluate the averages Nt and rt at every time instance t. Since in practice the nodes
do not necessarily have direct connections to each other, options such as the consensus-based
fusion rules (cf. Section 3) can alternatively be employed to ‘approximate’ Nt and rt. As
illustrated in Figures 3 and 4, such consensus-based approximation requires a number of
iterative communications between the nodes in order to reach the averages Nt and rt. The
stated iterative communications clearly require some time to be carried out and must take
place during every time interval t; tþ 1½ � (see Figure 5). We distinguish between the sampling
rate Δ and the sending rate δ. The sampling rate refers to the frequency with which the node i
collects its observables yi, t (t ¼ 1, 2,…), while the sending rate refers to the frequency with
which the node i sends/receives information Nj, t kð Þ and rj, t kð Þ (k ¼ 1,…, kn) to/from its neigh-
boring nodes. As shown in Figure 5, the sending rate δ should therefore be reasonably smaller

Figure 4. Probability Eq. (40) as a function of q for three numbers of iterative communications kn ¼ 10, 20 and 30 (pro-
tocols 1 (P.1), 2 (P.2), 3 (P.3) and 4 (P.4)). It refers to the probability that the absolute differences ∣ri, t knð Þ � rt∣ (i ¼ 1,…, 20)
are not larger than q times the standard-deviation σ (cf. Figure 2).
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than the sampling rate Δ so as to be able to incorporate consensus protocols into the informa-
tion filter setup. Such a consensus-based Kalman filter (CKF) would thus generally be of a two
time-scale nature [2], the data sampling time-scale t ¼ 1, 2,…, versus the data sending time-
scale k ¼ 1,…, kn. The CKF is a suitable tool for handling real-time data processing in a
distributed manner for the applications in which the state-vectors xt (t ¼ 1, 2,…) change rather
slowly over time (i.e. Δ can take large values) and/or for the cases where the sensor nodes
transfer their data rather quickly (i.e. δ can take small values).

Under the assumption δ ≤Δ, the CKF recursion follows from the Kalman filter recursion by
considering an extra step, namely, the ‘consensus update’. The algorithmic steps of the CKF in
information form are presented in Figure 6. Compare the recursion with that of the informa-
tion filter given in Figure 1. Similar to the information filter, the CKF at node i is initialized by
the zero information I i,1∣0 ¼ 0 and ii,1∣0 ¼ 0. In the presence of the data yi, t, node i computes its
local normal matrix Ni, t and right-hand-side vector ri, t to send them to its neighboring nodes
j∈N i, k (k ¼ 1,…, kn). In the consensus update, iterative communications between the neigh-
boring nodes i;N i, kf g are carried out to approximate the averages Nt and rt by Ni, t knð Þ and
ri, t knð Þ, respectively. After a finite number of communications kn, the consensus states Ni, t knð Þ
and ri, t knð Þ are, respectively, added to the time update information I i, t∣t�1 and ii, t∣t�1 to obtain
their measurement update version I i, t∣t and ii, t∣t at node i (cf. 28). The time update goes along
the same lines as that of the information filter.

4.2. Time evolution of the CKF error covariances

With the consensus-based information filter, presented in Figure 6, it is therefore feasible to
develop multiple distributed filters, all running in parallel over time. By taking recourse to an
average-consensus protocol, not all the nodes are needed to be directly linked, thereby
allowing non-neighboring nodes to also benefit from information states of each other. The
price one has to pay for such an attractive feature of the CKF is that the local predictors

bxi, t∣t ¼ I�1
i, t∣t ii, t∣t, i ¼ 1,…, n, (41)

will have a poorer precision performance than that of their central counterpart bxt∣t. This is due
to the fact that the consensus states Ni, t knð Þ and ri, t knð Þ i ¼ 1;…; nð Þ are just approximations of

Figure 5. The two time-scale nature of a consensus-based Kalman filter (CKF): The data sampling time-scale t ¼ 1, 2,…,
versus the data sending time-scale k ¼ 1,…, kn . The sending rate δmust be reasonably smaller than the sampling rate Δ so
as to be able to incorporate consensus protocols into the CKF setup.
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the averages Nt and rt. Although they reach the stated averages as kn ! ∞, one of course
always comes up with a finite number of communications kn. As a consequence, while the
inverse-matrix I�1

t∣t represents the error variance matrix Pt∣t ¼ D xt � bxt∣t� �
(cf. 17), the inverse-

matrices I�1
i, t∣t i ¼ 1;…; nð Þ do not represent the error variance matrices Pi, t∣t ¼ D xt � bxi, t∣t� �

. To

see this, consider the local prediction errors xt � bxi, t∣t� �
which can be expressed as (Figure 6)

Figure 6. Algorithmic steps of the CKF in information form concerning the time-evolution of the local information
vector ii, t∣t and matrix I i, t∣t of node i.
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xt � bxi, t∣t ¼ I�1
i, t∣t I i, t∣t�1 xt � bxi, t∣t�1

� �� n ri, t knð Þ �Ni, t knð Þxt½ �
 �
(42)

Note that the terms xt � bxi, t∣t�1
� �

and ri, t knð Þ �Ni, t knð Þxt½ � are uncorrelated. With lij as the
entries of the product matrix L knð Þ in Eq. (34), one obtains4

ri, t knð Þ �Ni, t knð Þxt½ � ¼
Xn
j¼1

lij rj, t �Nj, t xt
� �

, ) D ri, t knð Þ �Ni, t knð Þxt½ �ð Þ ¼
Xn
j¼1

l2ij Nj, t (43)

since D rj, t �Nj, t xt
� � ¼ Nj, t. With this in mind, an application of the covariance propagation

law to (42) results in the error variance matrix

Pi, t∣t ¼ I�1
i, t∣t I i, t∣t�1Pi, t∣t�1I i, t∣t�1 þ n2

Xn
j¼1

l2ij Nj, t

8<:
9=;I�1

i, t∣t (44)

that is not necessarily equal to I�1
i, t∣t (see the following discussion on Eqs. (47) and (48)).

In Figure 7 we present the three-step recursion of the error variance matrix Pi, t∣t (for node i). As

shown, the node i would need an extra input, i.e., the term
Pn

j¼1 l
2
ij Nj, t in order to be able to

compute Pi, t∣t. In practice however, such additional information is absent in the CKF setup. This
means that the node i does not have enough information to evaluate the error variance matrix
Pi, t∣t. Despite such restriction, it will be shown in Section 5 how the recursion of Pi, t∣t conveys
useful information about the performance of the local filters i ¼ 1,…, n, thereby allowing one to
a-priori design and analyze sensor networks with different numbers of iterative communications.

To better appreciate the recursion given in Figure 7, let us consider a special case where a
stationary state-vector xt is to be predicted over time. Thus Φt, t�1 ¼ I and St ¼ 0 t ¼ 1; 2;…ð Þ.
Moreover, we assume that all nodes deliver the same normal matrices Ni, t ¼ N i ¼ 1;…; nð Þ.
The central error variance matrix Pt∣t would then simply follow by inverting the sum of all
normal matrices over n nodes and t time instances. Collecting observables up to and including
time instance t, the stated variance matrix reads Pt∣t ¼ 1=tnð ÞN�1. We now compare Pt∣t with its
consensus-based local counterpart at node i, i.e. Pi, t∣t. The aforementioned assumptions,
together with

Pn
j¼1 lij ¼ 1, give

Ni, t knð Þ ¼
Xn
j¼1

lij Nj, t ¼ N, and n2
Xn
j¼1

l2ij Nj, t ¼ αnN (45)

in which the scalar α is given by

α :¼ n
Xn
j¼1

l2ij (46)

Substitution into the stated recursion provides us with the time-evolution of the error variance
matrix Pi, t∣t as follows (Figure 7)
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I i,1∣0 ¼ 0, Fi,1 ¼ 0
↓

I i,1∣1 ¼ nN, ) Pi,1∣1 ¼ α
1
n
N�1

↓

I i,2∣1 ¼ I i,1∣1, Fi,2 ¼ αnN ) Pi,2∣1 ¼ Pi,1∣1

⋮ ⋮ ⋮
I i, t∣t�1 ¼ I i, t�1∣t�1, Fi, t ¼ α t� 1ð ÞnN ) Pi, t∣t�1 ¼ Pi, t�1∣t�1

↓

I i, t∣t ¼ tnN, ) Pi, t∣t ¼ α
1
tn

N�1

(47)

This shows that the consensus-based error variance matrix Pi, t∣t is α times its central counter-

part Pt∣t ¼ 1=tnð ÞN�1. With the vector l≔ li1;…; lin½ �T, application of the Cauchy-Schwarz
inequality gives the lower-bound

Figure 7. The three-step recursion of the error variance matrix Pi, t∣t ¼ D xt � bxi, t∣t
� �

for node i. The extra term
Pn

j¼1 l
2
ij Nj, t

would be required to compute Pi, t∣t. The entries of the product matrix L knð Þ in Eq. (34) are denoted by lij.
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α ¼ eTn en
� �

lTl
� �

≥ lTen
� �2 ¼ 1 (48)

as lTen ¼ 1. Thus scalar α is never smaller than 1, i.e. Pi, t∣t ≥Pt∣t, showing that the performance
of the consensus-based predictor bxi, t∣t is never better than that of its central version bxt∣t. The
lower-bound Eq. (48) is reached when l ¼ 1=nð Þen, i.e. when lij ¼ 1=n (j ¼ 1,…, n). According to

Eq. (34), this can be realized if L knð Þ ! 1=nð ÞeneTn , for which the number of iterations kn might
be required to be reasonably large. The conclusion reads therefore that the local filters at nodes
i ¼ 1,…, n, generate information matrices I i, t∣t, the inverse of which are different from the
actual error variance matrices of the predictors bxi, t∣t, i.e. I�1

i, t∣t 6¼ Pi, t∣t.

5. Applications to GNSS

The purpose of this section is to demonstrate how the CKF theory, discussed in Section 4, can
play a pivotal role in applications for which the GNSS measurements of a network of receivers
are to be processed in a real-time manner. In a GNSS network setup, each receiver serves as a
sensor node for receiving observables from visible GNSS satellites to determine a range of
different parameters such as positions and velocities in an Earth-centered Earth-fixed coordi-
nate system, atmospheric delays, timing and instrumental biases, see e.g. [11, 12]. As the
observation equations of the receivers have satellite specific parameters in common, the
receivers’ observables are often integrated through a computing (fusion) center to provide
network-derived parameter solutions that are more precise than their single-receiver versions.
Now the idea is to deliver GNSS parameter solutions without the need of having a computing
center, such that their precision performance is still comparable to that of network-derived
solutions.

As previously discussed, consensus-based algorithms and in particular the CKF can be
employed to process network data in a distributed filtering scheme, i.e. no computing center
is required. In order to illustrate such applicability, we simulate a network of 13 GNSS
receivers located in Perth, Western Australia (Figure 8). As shown in the figure, each node
(white circle) represents a receiver having data links (red lines) to its neighbors with inter-
station distances up to 4 km. We therefore assume that the receivers receive each other data
within the ranges not longer than 4 km. For instance, receiver 1 is directly connected to
receivers 2 and 6, but not to receiver 3 (the inter-station distance between receivers 1 and 3 is
about 8 km).

5.1. GNSS ionospheric observables: Dynamic and measurement models

Although the GNSS observables contain information on various positioning and non-
positioning parameters, here we restrict ourselves to ionospheric observables of the GPS pseudo-
range measurements only [44]. One should however bear in mind that such restriction is made
just for the sake of presentation and illustration of the theory discussed in Sections 3 and 4.
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Would one, for instance, make use of the very precise carrier-phase measurements and/or
formulate a multi-GNSS measurement setup, solutions of higher precision levels are therefore
expected.

Let the scalar ysi, t denote the pseudo-range ionospheric observable that the receiver i collects
from satellite s at time instance t. The corresponding measurement model, formed by the
between-satellite differences ypsi, t≔ysi, t � ypi, t s 6¼ pð Þ, reads (cf. 5)

ypsi, t ¼ apsi, t; o νo, t þ apsi, t;ϕ νϕ, t þ apsi, t;ψ νψ, t
n o

� bpst þ εpsi, t (49)

where the term within :f g refers to the first-order slant ionospheric delays, and bpst denotes the
between-satellite differential code biases (DCBs). We use a regional single-layer model [45, 46]
to represent the slant ionospheric delays in terms of 1) νo, t as the vertical total electron content
(TEC), 2) νϕ, t and 3) νψ, t as the south-to-north and west-to-east spatial gradient of νo, t, respec-
tively. The corresponding known coefficients follow from Ref. [47]

asi, t; o ¼
1

cos zsi, t
� � , asi, t;ϕ ¼ 1

cos zsi, t
� � ϕs

i, t � ϕo, t

� �
, asi, t;ψ ¼ 1

cos zsi, t
� � cos ϕs

i, t

� �
ψs
i, t � ψo, t

� �
(50)

with :ð Þps≔ :ð Þs � :ð Þp. The angles ψs
i, t and ϕs

i, t, respectively, denote the longitude and latitude of

the ionospheric piercing points (IPPs) corresponding to the receiver-to-satellite line-of-sight

Figure 8. A network of 13 GNSS receivers simulated over Perth, Western Australia. Each node (white circle) represents a
receiver tracking GNSS satellites. The receivers have data links to their neighbors with inter-station distances up to 4 km.
The data links are shown by red lines.
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i� s (see Figure 9). They are computed with respect to those of the reference IPP at time
instance t, i.e. ψo, t and ϕo, t. The angle zsi, t denotes the zenith angle of the IPPs. These angles

are computed based on the mean Earth’s radius 6378:137 km and height of layer 450 km. The
measurement noises εsi, t are assumed to be mutually uncorrelated with the dispersion (cf. 6)

D εsi, t
� �

¼ 1:022

0:02þ sin θs
i, t

� �� �2 σ2 (51)

forming the variance matrices Rt in Eq. (6), where θs
i, t is the satellite elevation angle. The scalar

σ is set to σ ≈ 65:6 cm as the zenith-referenced standard-deviation of the GPS ‘geometry-free’
pseudo-range measurements [48].

Suppose that m number of satellites s ¼ 1,…, m, are tracked by the network receivers
i ¼ 1,…, n ¼ 13, during the observational campaign. The state-vector sought is structured as

xt ¼ νo, t; νϕ, t; νψ, t; b
p1
t ; bp2t ;…; bpmt

h iT
(52)

Thus the state-vector xt contains three TEC parameters νo, t, νϕ, t, νψ, t and m� 1ð Þ between-

satellite DCBs bpst (s 6¼ p). The dynamic model is assumed to be given by (cf. 2, 4 and 21)

νo, t
νϕ, t
νψ, t

264
375 ¼

νo, t�1

νϕ, t�1

νψ, t�1

264
375þ

do
dϕ
dψ

264
375, and bpst ¼ bpst�1 s 6¼ p (53)

Thus the DCBs bpst are assumed constant in time, while the temporal behavior of the TEC
parameters νo, t, νϕ, t, νψ, t is captured by a random-walk process. The corresponding zero-mean

Figure 9. Longitude (ψ) and latitude (ϕ) of an ionospheric piercing point (IPP) corresponding to a receiver-to-satellite
line-of-sight. The distance scales are exaggerated.
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process noises are assumed to be mutually uncorrelated, having the standard-deviations
σdo ¼ 1 mm/

ffiffiffiffiffiffi
sec

p
and σdϕ ¼ σdpsi ¼ 5 mm/rad/

ffiffiffiffiffiffi
sec

p
[49].

5.2. Observational campaign

The network receivers i ¼ 1,…, n (n ¼ 13), shown in Figure 8, are assumed to track GPS satel-
lites over 16 hours from 8:00 to 24:00 Perth local time, on 02-06-2016. The observation sampling
rate is set to Δ ¼ 1 minute. Thus the number of observational epochs (time instances) is 960. As
to the data sending rate δ (cf. 5), we assume three different sending rates δ ¼ 5, 10 and 15 sec-
onds. Thus the number of iterative communications between the neighboring receivers takes the
values kn ¼ 4, 6 and 12. The consensus protocol 3 (Table 1) is applied to the CKF of each receiver.

As the satellites revolve around the Earth, not all of which are simultaneously visible to the
‘small-scale’ network of Figure 8. Their visibility over time is shown in Figure 10 (left panel) in
which the satellites with elevation angles smaller than 10 degrees are excluded. There are 31
GPS satellites (i.e. m ¼ 31), with PRN 4 absent (PRN refers to the satellite identifier). PRN 22
has the maximum duration of visibility, while PRN 21 has the minimum duration of visibility.
Note also that PRNs 2, 6, 16, 17, 19, 26 and 32 disappear (set) and reappear (re-rise). That is
why their visibility is shown via two separate time intervals. Figure 10 (right panel) shows the
trajectories of the ionospheric pierce points on the ionospheric single layer that are made by
receiver-to-satellite line-of-sight paths. It is the spatial distribution of these points that drives
the coefficients apsi, t; o, a

ps
i, t;ϕ, a

ps
i, t;ψ in Eq. (49).

In the following we present precision analyses on the measurement update solutions of xt in
Eq. (52), given the network and satellite configurations shown in Figures 8 and 10, respec-
tively. Throughout the text, PRN 10 is chosen as the pivot satellite p (cf. (49)). By the term
‘standard-deviation’, we mean the square-root of prediction errors’ variance.

Figure 10. Left: GPS satellites visibility over time, viewed from Perth, Western Australia. Right: Trajectories of the
corresponding IPPs made by receiver-to-satellite line-of-sight paths. The satellites are indicated by different colors.
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5.3. Central (network-based) versus local (single-receiver) solutions

Before discussing the precision performance of the CKF solutions, we first compare the network-
based (central) TEC solutions with the solutions that are obtained by the data of one single-
receiver only (referred to as the local solutions). At the filter initialization, the standard-deviations

of the local TEC solutions are
ffiffiffiffiffi
13

p
≈ 3:6 times larger than those of the central TEC solutions (i.e.

square-root of the number of nodes). This is because of the fact that each of the 13 network
receivers independently provides equally precise solutions. In that case, the central solution
follows then by averaging all the 13 local solutions. Due to the common dynamic model Eq. (53)
however, the local solutions become correlated over time. After the filter initialization, the central
solution would therefore not follow the average of its local versions. The standard-deviation
results, after one hour of the filter initialization, are presented in Figure 11. Only the results of
the receiver 1 are shown as local solutions (in red). As shown, the standard-deviations get stable
over time as the filters reach their steady-state. On the right panel of the figure, the local-to-central
standard-deviation ratios are also presented. In case of the vertical TECs νo, t, the ratios vary from
1.5 to 3. For the horizontal gradients νϕ, t and νψ, t, the ratios are about 2 and 2.5, respectively.

5.4. Role of CKF in improving local solutions

With the results of Figure 11, we observed that the central TEC solutions considerably
outperform their local counterparts in the sense of delivering more precise outcomes, i.e. the
local-to-central standard-deviation ratios are considerably larger than 1. We now employ the

Figure 11. Left: Standard-deviation of the central (green) and local (red) solutions of the TEC parameters νo, t (top), νϕ, t
(middle) and νψ, t (bottom) as functions of time. Right: The corresponding local-to-central standard-deviation ratios.
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CKF for each node (receiver) i ¼ 1,…, 13, to improve the local solutions’ precision performance
via consensus-based iterative communications between the receivers. In doing so, we make
use of the three-step recursion given in Figure 7 to evaluate the error variance matrices Pi, t∣t

(i ¼ 1,…, 13), thereby computing the CKF-to-central standard-deviation ratios. The stated
ratios are presented in Figure 12 for two different data sending rates δ ¼ 15 seconds (left panel)
and δ ¼ 5 seconds (right panel). In both cases, the CKF-to-central standard-deviation ratios are
smaller than their local-to-central versions shown in Figure 11 (right panel), illustrating that
employing the CKF does indeed improve the local solutions’ precision. Since more iterative
communications take place for δ ¼ 5, the corresponding ratios are very close to 1. In that case,
the CKF of each receiver is expected to have a similar precision performance to that of the
central (network-based) filter. For the case δ ¼ 15 however, the CKF performance of each
receiver does very much depend on the number of the receiver’s neighbors. This is because of
the fact that only 4 iterative communications between the receivers take place (i.e. kn ¼ 4). The
receivers with the minimum number of neighbors, i.e. receivers 1, 3 and 13 (Figure 8), have the
worst precision performance as the corresponding ratios take largest values. On the other
hand, the receivers with the maximum number of neighbors, i.e. receivers 4, 7, 9 and 8, have
the best performance as the corresponding ratios are close to 1.

Next to the solutions of the TEC parameters νo, t, νϕ, t and νψ, t, we also analyze CKF solutions of

the between-satellite DCBs bpst (s 6¼ p) in Eq. (52). Because of the difference in the satellites
visibility over time (cf. Figure 10), the DCBs’ standard-deviations are quite distinct and very
much depend on the duration of the satellites visibility. The more a pair of satellites p� s are

Figure 12. Time-series of the CKF-to-central standard-deviation ratios corresponding to the TEC parameters νo, t (top),
νϕ, t (middle) and νψ, t (bottom). Left: The data sending rate is set to δ ¼ 15 seconds (i.E. 4 iterative communications). Right:
The data sending rate is set to δ ¼ 5 seconds (i.E. 12 iterative communications). The results of the nodes (receivers) are
indicated by different colors.
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visible, the smaller the standard-deviation is expected. We now consider the required time to
have between-satellite DCBs solutions with standard-deviation smaller than 0.5 nanoseconds.
Because of the stated difference in the standard-deviations, each between-satellite DCB corre-
sponds to a different required time. For the central filter, the minimum value of such required
time is 7 minutes, with the 25th percentile as 12, median as 38, 75th percentile as 63 and the
maximum as 84 minutes. Thus after 84 minutes of the filter initialization, all central DCB
solutions have standard-deviations smaller than 0.5 nanoseconds. Such percentiles can be
represented by a ‘boxplot’. We compute the stated percentiles for all the CKF solutions and
compare their boxplots with the central one in Figure 13. The results are presented for three

Figure 13. Boxplots of the required time (minutes) to have between-satellite DCBs solutions with standard-deviation
smaller than 0.5 nanoseconds. The performance of the CKF of each node (receiver) is compared to that of the central filter
(Cen.). In each boxplot, the horizontal lines from bottom to top show the minimum (black), 25th percentile (blue), median
(green), 75th percentile (blue) and maximum (black) of the stated required time. The data sending rate is set to Top: δ ¼ 15
seconds (i.E. 4 iterative communications), Middle: δ ¼ 10 seconds (i.E. 6 iterative communications), and Bottom: δ ¼ 5
seconds (i.E. 12 iterative communications).
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different data sending rates δ ¼ 15 seconds (top), δ ¼ 10 seconds (middle) and δ ¼ 5 seconds
(bottom). As shown, the more the number of iterative communications, the more similar the
boxplots becomes, i.e. the nodes (receivers) are reaching consensus. Similar to the TEC solu-
tions, the DCB precision performance of the CKF corresponding to the receivers 4, 7, 9 and 8 is
almost similar to that of the central one, irrespective of the number of iterative communica-
tions. This follows from the fact that the stated receivers have the maximum number of
neighbors (Figure 8), thus efficiently approximating the averages Nt and rt in Eq. (28) after a
few iterations. On the other hand, the receivers with the minimum number of neighbors require
more number of iterative communications in order for their CKF precision performance to get
similar to that of the central filter.

6. Concluding remarks and future outlook

In this contribution we reviewed Kalman filtering in its information form and showed how the
additive measurement update (28) can be realized by employing average-consensus rules,
even when not all nodes are directly connected, thus allowing the sensor nodes to develop
their own distributed filters. The nodes are assumed linked to each other at least through a
‘path’ so that information can flow from each node to all other nodes. Under this assumption,
average-consensus protocols can deliver consensus states Ni, t knð Þ; ri, t knð Þ½ � as an approxima-
tion of the averages Nt; rt

� �
in Eq. (28) at every time instance t ¼ 1, 2,…, thus allowing one to

establish a CKF recursion at every node i ¼ 1,…, n. To improve the stated approximation, the
neighboring nodes have to establish a number of iterative data communications to transfer and
receive their consensus states. This makes the CKF implementation applicable only for the
applications in which the state-vectors change rather slowly over time (i.e. the sampling rate Δ
can take large values) and/or for the cases where the sensor nodes transfer their data rather
quickly (i.e. the sending rate δ can take small values).

We developed a three-step recursion of the CKF error variance matrix (Figure 7). This recur-
sion conveys useful information about the precision performance of the local filters i ¼ 1,…, n,
thereby enabling one to a-priori design and analyze sensor networks with different numbers of
iterative communications. As an illustrative example, we applied the stated recursion to a
small-scale network of GNSS receivers and showed the role taken by the CKF in improving
the precision of the solutions at each single receiver. In near future the proliferation of low-cost
receivers will give rise to an increase in the number of GNSS users. Employing the CKF or
other distributed filtering techniques, GNSS users can therefore potentially deliver high-
precision parameter solutions without the need of having a computing center.
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