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Since almost all functional relations in our
geodetic models are nonlinear, it is important, es-
pecially from a statistical inference point of view,
to know how nonlinearity manifests itself at the
various stages of an adjustment. In this paper
particular attention is given to the effect of
nonlinearity on the first two moments of least
squares estimators. Expressions for the moments
of least squares estimators of parameters, residu-
als and functions derived from parameters, are
given. The measures of nonlinearity are dis-
cussed both from a statistical and differential geo-
metric point of view. Finally, our results are
applied to the 2D symmetric Helmert transforma-

tion with a rotational invariant covariance struc-

ture.

Puisque la plupart des relations fonction-
nelles dans nos modéles géodésiques sont non-
linéaires, il est important, surtout au point de vue
d'inférence statistique, de connaitre la facon dont
la non-linéarité se manifeste au long des dif-
férentes étapes d'une compensation. Dans le
présent article, on porte une attention particuliere
aux effets de la non-linéarité sur les deux pre -
miers moments des estimateurs par moindres car-
rés. On donne des expressions pour les moments
des estimateurs par moindres carrés, pour les
résiduelles et les fonctions dérivées des
paramétres. On parle des mesures de non-linéar-
ité des points de vue statistique et géométrique
différentiel. Finalement, on applique nos résultats
d la transformation d'Helmert symétrique a deux
dimensions avec une structure de covariance
invariante en rotation.

1. Introduction

Almost all functional relations in our geodetic
models are nonlinear. Hence, one might question
whether the use of the ideas, concepts and results
from the theory of linear estimation is justifiable in
all cases. Of course, it may be argued that prob-
ably most nonlinear models are only moderately
nonlinear and thus permit the use of a linear(ized)
model. This is true. Nevertheless, we need to have
ways of assessing the amount of nonlinearity in

nonlinear models and methods to prove whether a
linear(ized) model is a sufficient approximation.
We therefore need to know how nonlinearity mani-
fests itself at the various stages of an adjustment.

A general theoretical and practical investiga-
tion into the various aspects of nonlinear adjust-
ment using concepts of differential geometry was
started in [Krarup 1982) and [Teunissen 1984,
1985a]. In this paper we will follow [Teunissen,
1985a] and in particular discuss the effect of non-
linearity on the first two moments of least squares
estimators. More information on probabilistic
properties of nonlinear estimators can be found in
(Baarda 1967; Bahr 1985; Jeudy 1987; Kubik
1986; Schaffrin 1983; Teunissen 1985b and Wolf
1961].

This paper will refrain from discussing the
methods which can be used for computing the non-
linear estimates. For more details on these numeri-
cal methods and their properties refer to [Blaha
1987; Kelley and Thompson 1978; Kubik 1967;
Pope 1972, 1974; Saito 1973; Schek and Maier
1976; Stark and Mikhail 1973; Teunissen 1984,
1985a, 1987a, 1987b).

2. Linear versus nonlinear
least squares

Consider the model

y=Ax) +e, Cov.(y) = 6%y, 2.1)

where y is an m-vector of normally-distributed ob-
servational variates with mean A(x) and covariance
matrix 620, 62 is the variance factor of unit
weight, x is an n-vector of fixed but unknown pa-
rameters and A(.) is a map which maps R” into
R™_ Tt is assumed that Qy is positive-definite, that
A(.) is injective and sufficiently smooth and that
m>n.

We will use the least squares criterion for
obtaining estimates of x and the mean of y
respectively. This is probabilistically justified by
the fact that under the assumption of normality
least squares estimators are identical to maximum

likelihood estimators. The least squares criterion
reads
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min. | |y-A(x)l 12,
* 1
with the norm l | . | lz=(-)‘Qy- (-)

22)

Since, for varying values of x, A(x) traces lo-
cally an n-dimensional surface or manifold, say M,
embedded in R™, the scalar || y - A (x) | |can be
seen to equal the distance from y to the point A(x)
on M. Hence, the solution to (2.2) is given by that
point on M, say y=A (x),which has least
distance to y. A necessary condition for having a
least distance is that ¥ equals the orthogonal pro-
jection of y onto M.

In case map A(.) is linear, the n-dimensional
surface M traced by A(.) is flat and the condition of
orthogonality becomes a sufficient condition. In
this case we have the well known results (see
Figure 1):

y=Pay;Xx=4"%, (2.3)

with the orthogonal projector
Pa= A4 0541470y !

and an arbitrary inverse A” of A.

Figure 1: Linear

2

least squares’ orthogonal projection

In case map A(.) is nonlinear, the n-dimen-
sional surface M is curved and the condition of
orthogonality fails to be sufficient. To ensure suf-
ficiency we need in addition to orthogonality the
condition k| |y - A®) | | <1> where £ is the largest
curvature of M at A(x ) [Teunissen 1985a, p. 120].
If we assume sufficiency, the least squares estima-
tors can formally be written as (see Figure 2):

Y=Pa(»);x=40), (2.4)

where P 4(.) and A"(.) will be nonlinear in general.

Due to the nonlinearity of A(.) it is very
seldom that closed expressions can be found for
P4() and A-(.) respectively. In practice it will

therefore be necessary to recourse to methods which
are jterative in nature. One starts with an initial
guess x, and proceeds to generate a sequence Xg»

Xys X9y + - - which under some conditions

converges to the point X.

Once the estimates % and y are computed it is
of course not enough to just state that these are the
estimated values of the unknown x and mean of y
respectively. The step following the actual estima-
tion process is equally important. That is, it is also
necessary to know the distributional properties of
the estimators involved.

In case map A(.) is linear, it is not difficult to
derive the precise distribution of the least squares
estimators. The following distributional properties
are well known:

~

5 ~N(Ax, 02P4 Qy). T~ N (x, 02 (A" Q5'4))).
2.5)

Furthermore the Gauss-Markov theorem states that
these estimators are also minimum variance linear
unbiased estimators.

Unfortunately these results do not carry over to
the nonlinear case. Essential properties which are
used repeatedly in the development of the linear
theory break down completely in the nonlinear
case. Take for instance the mathematical
expectation operator E{.}. If 6 is a random variable

.and F is a nonlinear map, then

E {F(6)} = F(E{6)), 2.6)

i.e., the mean of the image differs generally from
the image of the mean. Hence, we can hardly expect
our least squares estimators to be unbiased in the
nonlinear case. Consequently least squares es-
timation cannot be justified anymore by referring to
the Gauss-Markov theorem. Of course this by no
means implies that the least squares estimators
should be done away with. Under the usual as-
sumption of normality the least squares estimators
are still maximum likelihood estimators. Besides,
when the importance of exactly unbiased estimators
is overemphasized, one can find one's self in an
impossible situation. Very often, there is a natural
estimator which is, however, slightly biased. For

example, if 0 is a good unbiased estimator of 5 and
if it is required to estimate F(B), then it seems

natural to estimate F(B8) by F(8), although this
estimator will nearly always be biased. It is
important however to have a means of assessing
the bias and more generally for statistical inference
purposes, to have a means of computing the prob-
ability distributions, or approximations to it, of the
estimators involved.
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3. Mean and Variance of
Nonlinear Estimators

Before discussing the probabilistic properties
of least squares estimators, we first discuss in this
section some methods of deriving the distributional
properties of general nonlinear estimators.

We will start with the univariate case. The
multivariate generalization then becomes
straightforward.

Let 6 be a random variable and F(.) a nonlinear
function. Our objective is to find some of the dis-
tributional properties of F(0). Broadly speaking
four approaches suggest themselves. Most of the
exact methods are however difficult to apply in
practice.

Firstly, if the density D(0) of @ is given, then
theoretically at least, the distribution of F(6) can be
found. This follows since the cumulative distribu-
tion C(y) of y = F(0) satisfies

C (y)=Prob. (F(8) <y) = D(e)e,

{olF(6)<y) G.1)

for fixed y. Since (3.1) describes the probability of
an event in terms of 0, such a probability can
theoretically be determined by integrating the den-
sity of 8 over the region corresponding to the
event. The problem with this method is that in
general the desired probability for each y cannot
easily be evaluated.

Secondly, under some restrictions on F(.)
equation (3.1) can be worked out to give the density
D(y) of y = F(8) in terms of the density D(6) of 6:

D(y)=D(6) /|dsF(8) , with 6 = F(y) . (3.2)

Unfortunately, because of the inversion of F, it is
very seldom that such an exact method can be ap-
plied with success.

The next thing that one can try to do is to
derive some of the moments of the distribution of
F(0), i.e., the mean and variance:

Figure 2: Nonlinear least squares' orthogonal projection

E(Fe))= | F(o)D(o)e; Valre))= | [FO}E{FO)TD(e)® (33)

—00 —oc0

The complexity of these computations depend very
much on the nature of the functions F(.) and D(.).
But in general they can become quite complicated,
especially in the multivariate case.

As a last resort one can try to compute

‘| approximations to the mean and variance. This can

be done by using a suitable Taylor expansion. If

F(.) is sufficiently smooth and 0 is a random -

variable with mean g and variance 62, expansion of
F(B) at g gives:

F(6) = F(8) + do(8) (0-6) + %aép('é) (6-6f +...
G4)

Now if ¢ is small enough then by Chebychev's in-
equality, Prob. ([9—9 |28)5g2/82 for any >0, 6
will depart only a little from 0 except on rare occa-

~

sions and therefore (6—9) will typically be small.
The higher order terms in (3.4) can therefore be ne-
glected. Taking the expectations of both sides of
(3.4) then gives for the mean of F(6):

E{F6)} = F (8) + %o%zF ©). 3.5)

In a similar way we find for the variance of F(0), if
terms of 6* and higher are neglected, that

Var. {F(6)) = o2 [ (8] . (3.6)

These approximations can easily be improved upon
by including more terms of the Taylor expansion.

In the multivariate case we can take 0 to be a
random vector with n components 0%, a=1,...,
n. The above approximations then generalize to:
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x= Qsin/T+ (sinzrlmos;{

a) E{Fe)- Fo)) = % o%pH(3) g
b) Var{Fe)) =0%ur(8) s 3pr(0)

2
where a,B =1,...,n, dgB Fis the Hessian ma-
trix of F, 62g%B is the covariance matrix of 9 in
index notation and Einstein's summation conven-
tion is used for repeated indices. Note that in (3.7a)
one needs to compute the trace of the product of the
Hessian matrix of F and the covariance matrix of .

3.7

Example 1

Consider the distance function 2(x,y) = (x2 +
y2)¥2. Assume that x and y are uncorrelated random
variables with variance 6® and mean X and y
respectively. Since x and y are uncorrelated, goB is
a 2x2 unit matrix. Hence we only need to compute
the trace of the Hessian of 2(x,y) to find the differ-
ence between E{2(x,y)} and 2 (X,y.).

The Hessian reads

s 2 (Xy) =

Thus

E(20cy) - 2 (%9) } = —F

22(x.y) 3.8)

Example 2

Consider the function x= 2 sin A, where 2
stands for distance and A for azimuth. Assume that
R and A are uncorrelated random variables with

variance c% and c%, and mean 2 and A respectively.
A Taylor expansion around 2 and A gives

ehell

20
A-A

~

2-2
A-A

0 cos X

22 ] [
cos ; -Esin Z

A-A

|-

Hence the Hessian reads
0 cos ;
o x = ~ ~ ~:|'
cos A -Qsin A

Since the covariance matrix of £ and A is given by

]

0
it follows that the trace of the product of the Hes-

sian and the covariance matrix equals -652 sin A.
Thus:

7

E{x-2sinA) = -;—cﬁz sin A 39

By inserting realistic values 64 = 10-S and 2 = 1
km into (3.9) it can be seen that the difference

between E{x} and £ sin A is completely negligible.
This is typical of many geodetic situations. Note
however that it is not so much the absence of
severe nonlinearity which makes bias negligible,
but the relatively high precision of the
measurements.

4. Mean of Nonlinear
Least-Squares Estimators

Let us now return to our model (2.1). To ob-
lain an approximation to the mean of the least
squares estimators of mode! (2.1) we have to mod-
ify our method of the previous section somewhat.
The reason being that in general we do not have
closed expressions available which express the es-
timators as known functions of the observables.

1 We therefore have to invert, in some way, the Tay-

lor expansion. The method we will use is given in
[Teunissen, 1985a] and can be described as follows:

First assume that the least squares estimator *
of x in model (2.1) can be written as a smooth
enough function of the random m-vector y. Then
Taylor expand this function at the mean E(y} of y.
This gives an expansion in e = y - E{y}. The prob-
lem is now to find the coefficients of this expan-
sion, i.e., to find the partial derivatives of various
order of the function relating ¥ to y. Once these
coefficients are known formula (3.7) of the previ-
ous section can be applied.

The coefficients are found in the following
way. We start from the orthogonality condition
0= 8xA(§)*Q)',le (%), where 3xA (%) is the Jaco-
bian of A(.) evaluated at xand (%) = y -4 (%). Ex-
pansion of right-hand side of the orthogonality
condition at x gives an expansion in X-x. We now
substitute our first expansion in e in the above ex-
pansion in X-x. The result is a new expansion in e,
which is identical to zero for all e. Hence we may
collect terms of the same order and set them to
zero. In this way we can recursively determine all
the coefficients sought. Although the derivations
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become quite lengthy and tedious it is in principle
possible to obtain expressions for the mean of the
least squares estimators to any desired approxima-
tion. Note however that our expansions are evalu-
ated at the "true" unknown x. The approximations
so obtained can therefore only be evaluated by sub-
stituting the estimated parameters for the true ones.

Neglecting terms of order higher than o2, our
results for the biases in X and € read:

a) E{Zx) = 0:0:A(x)" 05 by,
b) E{e}= E{y5) = Pdan by , with | a1y

) by = -%02833 A(x) g (x) .

where a, B =1,...,n; Qcequals the inverse of

(axA(x)*ijlaxA(x)) »9xA(x) is the Jacobian of .

A(.) evaluated at x, Pg'x A (x) is the orthogonal

projector projecting onto the orthogonal
complement of the range space of

. 2 .
0xA(x), i.e., Pg'xA(x) =1-Pa,A(x). aaBA(x) 1s
the m-vector of nxn Hessian matrices of the

observation equations, and g®B is Q. written in
index notation. Note that the components of the m-
vector b, in (4.1) are computed from the trace of the
products of the Hessian matrices of the observation
equations and the matrix g8 (x).

It is interesting to observe that the biases in
the least squares estimators x and ¢ are computed
from the m-vector by, just like in the linearized
least squares case the estimators x and ¢ themselves
are computed from the m-vector y. One may inter-
pret the m-vector b, as describing what the bias in
the m-vector y would have been if it were computed
from x as y = A(x), assuming now that x is a ran-
dom vector with covariance matrix 62g®B. Com-
pare with (3.7).

Although (4.1) completely describes the bias
in all the components of the parameter vector and
residual vector respectively, it is useful to have
scalar bias-measures available which summarize the
bias present in the nonlinear model. To discern the
significance of the biases we propose to weight the
biases in the parameters and residuals with the in-
verses of 62Q  and 02Qy respectively. Our scalar

bias-measures read therefore:

a) 6 -2E{% -x) 0 E{x-x) = ¢ 2| Paya(xpyl! 2

b) o2 Ee) o' E(€) = 021l Py 40y byll?

Expressions (4.1) and (4.2) show that the bias in
the parameters is zero if either the model is linear,
ie., by =0, orif b, is orthogonal to the range
space of dyA(x). The bias in the residuals is zero if
either the model is linear, by is orthogonal to the
orthogonal complement of the range space of
0xA(x) or if m = n, i.e., if there is no redundancy.
Note that the effect of b, on the bias in ¢ in-
creases for increasing values of the so-called redun-
dancy numbers, i.e., the diagonal elements of the
4

projector P3, A (x)* This is comparable with the
effect of the redundancy numbers on reliability in
linear models [Teunissen 1985c, p. 541]. Drawing
this parallel with reliability theory, we could call
(4.2a) a scalar measure of external bias and (4.2b) a
scalar measure of internal bias.

Due to orthogonality (see Figure 3) we have
according to Pythagoras:

[15y112 =11 Paaeypyl1 2 +11 P a(py 12
4.3)

This shows that the scalar bias-measures of
(4.2) are bounded from above by o2 Iby| |2,
Hence, to decide whether bias is small it may in
some cases be sufficient to evaluate only the m-
vector by.

4.2

A(x)

Figure 3: Orthogonal decomposition of by

R(d, A(x))
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Note that, if only a few parameters per observation
equation are involved (this is typical of many
geodetic situations), the Hessian matrix of the ob-
servation equation becomes sparse. This may sim-
plify the computation of the components of b,
considerably.

Since the components of b, of (4.1c) are com-
puted from the traces of the products of the Hessian

matrices of the observation equations with g®B we

can bound the absolute value of the ith component
of b, from above as:

|b§| < oan(aaﬁAi)p(gaB), 4.4)

1
2

where aﬁm* is the Hessian matrix of the ith
observation equation and p(.) stands for spectral
radius. The spectral radius, p(A), of a matrix A is
defined to be p(A) = max | A |, where A is an
eigenvalue of A.

5. A Differential Geometric
Interpretation

The differential geometry of nonlinear adjust-
ment was introduced in Krarup [1982] and Teunis-
sen [1984, 1985a, p. 118]. Here we will briefly
comment on the differential geometric interpreta-
tion of (4.1). Using the Christoffel symbols of the

a —
second kind FBY and the mean curvature vector N of
manifold M we can write (4.1) as

a) E{x”- xo} = - Lo2ghy T8y
2 _ (5.1)
v E{e})=E{y-3}=- -:12-62nN

where o, B, y=1,...,n.

It is obvious that the bias in X depends on the
parametrization. This is also reflected by the fact
that the Christoffel symbols fail to be tensors. The
bias can be made to vanish locally by choosing a
suitable parametrization. The corresponding param-
eters are known in differential geometry as geodetic
polar coordinates. Since the Christoffel symbols
describe the turning and twisting of the coordinate
lines in manifold M, equation (5.1a) also shows
that the bias in X is caused by the nonlinear behav-
ior of these coordinate lines.

As (5.1b) shows, the bias in the residual vector
€ is determined by the mean curvature of manifold
M. Tt is therefore invariant for reparametrizations.
The bias in € can vanish identically despite
nonlinearity in the observation equations. If this is
the case, one has a flat manifold M with nonlinear
coordinate lines in it, or 2 manifold with vanishing
mean curvature,

6. A Dual Formulation

As is well known, an adjustment problem can
be formulated in terms of either observation equa-
tions or condition equations. So far we have used
observation equations. We will now formulate the
bias in € in terms of quantities which can be com-
puted from the condition equations.

Model (2.1) in terms of condition equations
reads

U*(y) =1, 6.1)

where ¢ is an (m-n)-vector of misclosure variates
and U*(.) is a map which maps R™ into R™"™ The
relation between the maps A(.) and U*(.) is given
by

U*(A(x)) =0 for all x. 6.2)
This relation enables us to re-express the bias

in ¢ in terms of quantities derivable from the
condition equations. Our result reads

E{Q} = E{y"}:} =0y ayU(S") Qt-lbr , with

b= ;—028§U ) 27 (5)

(6.3)

where i,j=1,...,m,Y stands for the expectation
of y, dyU(¥) is the Jacobian of U(.) evaluated at
¥, Or=0yU *(37) Qy oyU(3), aisz *(5") is the (m-n)-
vector of mxm Hessian matrices of the condition
equations and g"j(y) is the matrix PaA(x)Qy =
OxA(x)QxdxA(x)* in index notation.

Note that the bias in é is computed from the
{m-n)-vector b,, just like in the linear(ized) least
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squares case, the estimator € itself is computed
from the vector of misclosures z. One may interpret
the (m-n)-vector b,, as describing what the bias in ¢
would have been if it were computed from y as t=
U* (y), assuming now that y is a random vector
with covariance matrix o2gl,

7. Variance of Nonlinear
Least Squares Estimators

The derivation of the covariance matrix of the
least squares estimator ¥ of x follows along the
same lines as our derivation of the mean of X. Al-
though the result becomes rather unwieldy, some
structure can be discerned by using differential ge-
ometric quantities. Our approximation to the co-
variance matrix of X, neglecting terms of orders
higher than 64 reads:

Hiz®- £z )P - £f28))) 2 02508
L ) L
+ Lo-“‘q’(lsl'a g1ee %0 + 0481141’8“"322_{1) 05's78 (PaanZEY4) gpp

+ c'4gf1737(- -;—l'gsg*:s) + o"‘gBYBY ( %—rgagﬁs)

7.1

where Q,B,...,e = 1,...n,

Note that the first term on the right-hand side
of (7.1) equals the approximation which is
customarily used in linearized least squares. This
approximation thus suffices if one may neglect
terms of order o* and higher. The second and last
two terms on the right-hand side of (7.1) depend on
the parametrization, whereas the third term depends
on the curvature of manifold M. Since this third
term depends on curvature there is a limit in the re-
duction that can be achieved through reparametriza-
tions. The last two terms describe the change of
bias in x. Compare with (5.1a). The third term
vanishes if the manifold is flat and the last four
terms vanish if the observation-equations are linear.

8. On the Propagation
of Bias

In many practical applications the purpose of
the estimation process is not so much the
computation of the estimator of x in model (2.1),
but the computation of an estimator of a quantity
derived from x, say f = F(x), where F() is a

nonlinear function. In this case the computation of
x constitutes an intermediate step in the estimation
process.

Since f = F(x), it is natural to compute the es-
timator of f as f = F(x) where x is the least squares
estimator or x. To find the bias in the estimator f

of f, we apply a Taylor expansion to f = F (x) at x,
and take the expectation. This gives:

E{}-F(x)} = dF(x)'E{Z-x} + %agpF(X)E« o) (% Ii-x")}

3.1

If terms of order o* and higher are neglected,
substitutionA of (4.1a) and (7.1) into (8.1) gives for

the bias in £

BYF(8)) 2 24P () Q:2A(3)' 05y + L 020Ea(x)8%(3)

3.2

Note that the quadratic term of (8.1) must be
included in the bias propagation, since both terms
on the right-hand side of (8.1) are of the order 2.
The second term on the right-hand side of (8.2)
only vanishes if the function F(.) is linear. The
first term vanishes if x happens to be an unbiased
estimator of x.

9. On the Bias in the 2D
Symmetric Helmert Trans-
formation

The nonlinear model of the 2D Symmetric
Helmert transformation with a rotational invariant
covariance structure was introduced in Teunissen
[1985a, p. 141] as:

E{( )] me)®1n12®e)( ) (12®Qu 0)

I2n L0,

0.1

327
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where u' and v' are the random 2n-vectors of 2D
cartesian coordinates of the n network points in the
two coordinate systems respectively; A is scale;
R(0) is a 2x2 rotation matrix with rotation angle 6;
v is the 2n-vector of unknown coordinates in the
second coordinate system; ¢ is the two dimensional
translation vector; e = (1, ...,1)*; Q, is a scaled
version of Q,, i.e. 0, =s2Q,, where Q, is an nxn
positive definite matrix; and ® denotes the Kro-
necker product.

With w'=( .., x1i Y1, -- )% v =(...,
xX2i,¥2i, - -)*andv=(...,xiyi...)*% the
functional part of (9.1) can be written in
components as:

E{x1;} = Acos O x; + Asin 0 y; ,
E{yi} = -Asin 6 x; + Acos 0 y;,
Efxaul=x,

E{yxy=y, i=1,..,n

We have called the model the Symmetric
Helmert transformation, since it assumes that both
coordinate sets u' and v' are random. In the classical
Helmert transformation only one of the two
coordinate sets is assumed random. The remaining
coordinate set is then assumed fixed, see e.g.,
[Helmert 1893; Kdchle 1982; Krarup 1985; Teu-
nissen 1985a]. As a consequence the classical 2D
Helmert transformation constitutes a linear model,
whereas the 2D Symmetric Helmert transformation
constitutes a nonlinear model. That is, contrary to
the classical 2D Helmert transformation, there does
not exist a parametrization for the Symmetric
Helmert transformation which results in linear ob-
servation equations,

As was shown in Teunissen [1985a, 1987a and
b], it is possible to derive an exact nonlinear least
squares solution of model! (9.1). Hence no
linearization of model (9.1) is needed and the com-
putation of approximate values and iterations can
be avoided.

Although the covariance structure of model
(9.1) is of a simplified form, it is felt that this
structure is still sufficiently general for many prac-
tical applications. When digitizing maps, the co-
variance matrix of the digitized coordinates can of-
ten even be simplified to a scaled unit matrix. Also
in case of geodetic networks the assumption of a
rotational invariant covariance structure often suf-
fices. The rotational invariant Baarda-Alberda sub-
stitute matrix [Teunissen, 1985c] for instance, de-
scribes the precision of many geodetic networks to
a sufficient degree.

Since the exact nonlinear least squares solution
of model (9.1) is known, the biases in the estima-
tors can be derived through either the use of (3.7),
(4.1) or (5.1). As was mentioned in section four,
the vector by of (4.1) already gives valuable infor-
mation on the bias of the estimators. For model
(9.1) this vector reads

9.2)
where

v=(L®PL , P =1,-P. , P. = ele*0. e} e*0,
and the variance of A is given by

o"i‘ = Mzs;z .
v{neod ©3)

Equation (9.2) shows that the last 2n compo-
nents of b, are zero. This is due to the absence of
nonlinearity in the corresponding observation equa-
tions. The first 2n components of b, can, however,
still be considerable. In particular, the components
of the vector v in (9.2) can be arbitrarily large, de-
pending on the location of the origin of the coordi-
nate system. Thus it cannot be decided on the basis
of (9.2) whether bias will be small. We therefore
apply (4.1) to our model (9.1) to obtain the biases
in the parameters and the residuals of the estimated
coordinates. The result is surprisingly, that all bi-
ases, except the one for scale, equal zero. The ex-
planation reads as follows. The bias in the transla-
tion is zero because ¢ occurs linearly in our model.
The bias in the rotation angle vanishes, since
parametrization with 6 reduces the Christoffel
symbols to zero. Finally, the fact that the bias in
the least squares residuals of the estimated

coordinates is zero, can be explained as follows.

One can show [Teunissen 1985a, p. 168] that the
manifold described by model (9.1) has only two
non-zero curvatures per normal direction. Moreover,
the curvatures only differ in their signs. Hence the
mean curvature of the manifold is zero. Therefore,
according to (5.1b), the bias in the residual vector
must vanish.

The bias in the least squares estimator 5: of
scale is given by the simple formula

£i) 2 Lop(%) 94)

This shows that the mean of the test statistic
( - 1)/ o3 which is customarily used for testing

1
whether A = 1, differs from zero by 253,
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To get some indications of how the bias in
scale depends on the number of network points and
network precision, we assume as in {Teunissen
1986, p. 221], that the points in the second coor-
dinate system are distributed over a square grid of
specing d Wedso asume thet Oy = 021 and Qy = 02l,, .
With these assumptions, equation (9.4) yields

o Rl
elia) d’»ﬂ(n-l) = 9.5)

where n equals the number of network points.
This shows that for most practical applications
the bias in scale can be neglected. For (o,/d) =

(6v/d) = 10°3, A =1and n = 4 we have namely E

{X—M = 1/2- 10 -10. Again note that it is primarily
the high precision of the measurements which
make bias negligible.

10. Conclusions

In this paper we have discussed the effect of
nonlinearity on the probabilistic properties of least
squares estimators. Some exact methods of deriving
the probability distribution of nonlinear estimators
were given, These methods are, however, difficult
to apply in practice. Hence, the best one can do in
most cases is to obtain approximations using suit-
able Taylor expansions. We have shown how to
derive these approximations for general nonlinear
estimators and for least squares estimators. In the
case of least squares estimators, we had to over-
come the difficulty of not knowing the exact rela-
tion between the estimator and the observables.

Two different expressions for the bias in the
parameter vector and residual vector respectively,
were derived. The second set of expressions gives a
differential geometric interpretation and shows how
curvature of the manifold and nonlinearity of the
coordinate lines effect bias.

We also presented a dual expression for the
bias in the residual vector based on condition equa-
tions and showed how bias in the parameter vector
propagates into the bias of estimators derived from
the parameters.

An approximation of the second moment of
the parameters was given to the order of ¢* and ex-
pressed in terms of differential geometric quantities.
The first term of this expression, being of the order
o2, corresponds to the approximation customarily
made.

Finally, we applied our results to the 2D
Symmetric Helmert transformation. To an approx-
imation of the order o# all biases, except the one
for scale, turn out to be zero. A geometric explana-
tion was given. Although the bias in scale does not
vanish, it is of the order 62 and can, therefore, for
most practical cases be considered insignificant.
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