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Abstract A new global navigation satellite system (GNSS)
carrier-phase attitude model and its solution are introduced
in this contribution. This affine-constrained GNSS attitude
model has the advantage that it avoids the computational
complexity of the orthonormality-constrained GNSS attitude
model, while it still has a significantly improved ambiguity
resolution performance over its unconstrained counterpart.
The functional and stochastic model is formulated in multi-
variate form, for one-, two- and three-dimensional antenna
arrays, tracking GNSS signals on an arbitrary number of fre-
quencies with two or more antennas. The stochastic model
includes the capability to capture variations in the antenna-
quality within the array. The multivariate integer least-
squares solution of the model parameters is given and the
model’s ambiguity success-rate is analysed by means of the
ambiguity dilution of precision (ADOP). A general closed-
form expression for the affine-constrained ADOP is derived,
thus providing an easy-to-use and insightful rule-of-thumb
for the ambiguity resolution capabilities of the affine con-
strained GNSS attitude model.
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1 Introduction

GNSS attitude determination is a problem that takes an
important place in the development of many navigation,
guidance and control systems. It employs multiple GNSS
antennas firmly mounted on a platform’s body to estimate its
orientation with respect to a chosen reference frame. GNSS
attitude determination is a rich field of studies, with a wide
variety of challenging (terrestrial, sea, air and space) appli-
cations (Tu et al. 1996; Bar-Itzhack et al. 1998; Peng et al.
1999; Caporali 2001; Yoon and Lundberg 2002; Park and
Teunissen 2003; Li et al. 2004; Simsky et al. 2005). Exam-
ples of space applications are satellite formation flying and
space platform attitude, guidance and control, see e.g. (Cohen
et al. 1994; Axelrad and Ward 1994; Lopes 2002; Ziebart
and Cross 2003; Madsen and Lightsey 2004; Dai et al. 2004;
Unwin et al. 2002; Buist et al. 2010) and examples of air-
or shipborne applications are attitude-heading reference sys-
tems for aviation, development of antenna pointing systems,
joint precision and approach landing, low-cost UAV attitude
determination for remote sensing and precise docking of ves-
sels, see e.g. (Corbett 1993; Lu 1995; Lachapelle et al. 1996;
DeLorenzo et al. 2004; Hide and Pinchin 2007; Giorgi et al.
2010).

High-precision GNSS attitude determination requires use
of the very precise carrier phase observations. However, to
fully exploit the high-precision of the carrier phase data,
one needs to resolve their unknown double-differenced cycle
ambiguities as integers. Once this integer ambiguity resolu-
tion has been done successfully, the carrier phase data will
act as very precise pseudo range data, thus making precise
attitude determination possible.

The earliest methods of attitude ambiguity resolution are
the so-called motion-based methods, see e.g. (Cohen and
Parkinson 1992; Cohen 1996; Crassidis et al. 1999; Chun
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and Park 1995). These methods take advantage of the change
in receiver-satellite geometry induced by platform’s motion.
They are not applicable, however, on an epoch-by-epoch
basis, as the presence of motion is needed per se.

More recently, attitude ambiguity resolution has been
solved by searching in the ambiguity domain using the
LAMBDA method, see e.g. (Wang et al. 2001; Furuno 2003;
Lin et al. 2004; Dai et al. 2004; Monikes et al. 2005; Kuylen
et al. 2006, 2005; Psiaki 2006; Hauschild and Montenbruck
2007; Hauschild et al. 2008; Pinchin 2008; Wang et al.
2009). Although this method is known to be efficient and
known to maximize the ambiguity success rate, the method
has been developed for unconstrained and/or linearly con-
strained GNSS models (Teunissen 1995, 1999; Verhagen and
Teunissen 2006). It is therefore not necessarily optimal for
the GNSS attitude determination problem, for which often
the antenna geometry or baseline lengths are provided as
well.

In order to do proper justice to the a priori information, the
nonlinear baseline constraints should be fully integrated into
the ambiguity objective function, thereby receiving a proper
weighting in its minimization and providing guidance for
the integer search. The constrained LAMBDA method is the
first method for which this has been achieved. The method’s
constrained integer least-squares theory has been described
in (Teunissen 2010) and its high, single- and multi-base-
line, single-epoch success-rate performance has been demon-
strated for a variety of land, sea and air experiments in (Giorgi
et al. 2010, 2011; Teunissen et al. 2011). But although this
method has an increased success-rate performance in com-
parison with existing techniques, the rigorous inclusion of
the nonlinear constraints into the ambiguity objective func-
tion has made the complexity of its integer ambiguity search
increase as well. This is primarily due to the complexity of
its search space, which is now not ellipsoidal anymore. To
avoid this complexity, we introduce in this contribution a
new alternative method, one that is a compromise between
the unconstrained LAMBDA method and its more complex
multivariate constrained variant.

The method to be introduced follows from a particu-
lar relaxation of the nonlinear constraints. In GNSS atti-
tude models one can generally identify two types of non-
linear constraints, the integer constraints of the carrier-phase
ambiguities and the orthonormality constraints of the atti-
tude matrix. These two types of constraints play a dis-
tinct role in GNSS attitude determination. The presence
of the integer ambiguities enables precise attitude deter-
mination, whereas the presence of the orthonormality con-
straints enables to achieve high ambiguity success-rates and
therefore reliable attitude determination. By selecting an
affine subset of the orthonormality constraints, the other-
wise increased search space complexity can be avoided and
standard ambiguity resolution can be applied. The relaxation

of the constraints goes, of course, at the expense of model
strength and will therefore result in success-rates that are
lower than those of the multivariate constrained LAMBDA
method. However, when the number of baselines is larger
than the dimension of their span, the affine-constrained ambi-
guity success-rates remain generally high, thus making the
easier-to-resolve affine-constrained GNSS attitude model a
viable alternative to the orthonormality-constrained GNSS
attitude model.

This contribution is organized as follows. In Sect. 2, the
GNSS attitude model is introduced in multivariate form. The
multivariate formulation is particularly suitable for small
GNSS arrays such as used in attitude determination. The
functional and stochastic model are given and they are for-
mulated for an arbitrary number of frequencies. The struc-
ture of the stochastic model is chosen such that it also
can capture variations in antenna-quality within the array.
By formulating the parametric orthonormality constraints of
the attitude model in implicit form, the attitude constraints
are shown to be separable into linear and quadratic con-
straints. By discarding the quadratic constraints, the affine-
constrained multivariate attitude model is obtained. This
model is solved in a step-wise manner in Sect. 3. To show
the impact of the affine-constraints, the float and fixed least-
squares matrix solutions of the array and ambiguities are
derived for both the constrained and unconstrained case.
These results are then used as basis for constructing the
affine-constrained ambiguity objective function and for the
comparison with its unconstrained and orthonormality-con-
strained counterparts.

In Sect. 4, the ambiguity resolution strength of the affine-
constrained GNSS attitude model is described and analysed.
This is done by means of the ambiguity dilution of preci-
sion (ADOP), for which a general closed form formula is
derived. With this general form, we are able to present a very
simple and insightful rule-of-thumb describing the model’s
ambiguity resolution capabilities. This rule clearly shows
the role of the various contributing factors of the model,
such as phase- and code-precision, number of frequencies
and their wavelengths, and number of antennas and satel-
lites. From it the expected ambiguity resolution performances
of one-dimensional, two-dimensional and three-dimensional
antenna arrays are inferred.

In our multivariate formulation, a frequent use is made of
the Kronecker product and the vec-operator. For their proper-
ties, see e.g., (Harville 1997; Magnus and Neudecker 1995).
In the following, E(.) and D(.) denote the operators of expec-
tation and dispersion. The capital letter Q is reserved for var-
iance matrices. Thus D(a) = Qaa is the variance matrix of
the random vector a. Instead of writing Qvec(Y )vec(Y ) for the
variance matrix of vec(Y ), we write QY Y . Thus D(vec(Y )) =
QY Y . The squared M-weighted norm of a vector x is denoted
as ||x ||2M = xT M−1x .
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2 The multivariate GNSS attitude model

2.1 Attitude determination

The attitude of a rigid body (or platform) is described by
the orientation of its body frame with respect to a reference
frame. Let there be r + 1 body points of which one, say
the first, is chosen as reference point. Furthermore, let the
coordinate-difference vectors, with respect to the reference
point, of the remaining r body points be denoted as bα , when
expressed in the body frame, and as xα , when expressed in
the reference frame, with α = 1, . . . , r . Then the 3× r base-
line matrices X = [x1, . . . , xr ] and B = [b1, . . . , br ] are
linked as

X = RB (1)

in which R is a rotation matrix, R ∈ SO(3). A rotation matrix
is an orthonormal matrix, RT R = I3, that has determinant
det(R) = +1 (Kuipers 2002). Only three of the rotation
matrix entries are independent, since its nine entries fulfill
the six conditions of RT R = I3.

The goal of attitude determination is to determine R, or
parts thereof, from a matrix equation like (1). Once this is
done, the attitude parameters can be extracted from its matrix
entries. As illustration, consider the Euler-angle parametri-
zation which is commonly used in aerospace applications
(Kuipers 2002). Let the reference-frame be the NED (North,
East, Down) local level frame and let the (aircraft)body-
frame be defined as having the first axis longitudinal in the
direction of flight, the second axis in the direction of the right
wing and the third axis completing it as righthanded frame.
Then

R =
⎡
⎣

cHcE −sHcB + cHsE sB sHsB + cHsEcB
sHcE cHcB + sHsE sB −cHsB + sHsEcB
−sE cE sB cEcB

⎤
⎦ (2)

with Euler-angles: heading H, elevation E and bank B (we
used the short-hand notation cα = cos(α) and sα = sin(α)).
Hence, once R is known, the Euler angles can be determined
from the rotation matrix entries R21, R31 and R32 as

H = arcsin

(
R21

cos(E)

)
, E = − arcsin(R31)

B = arcsin

(
R32

cos(E)

)
(3)

Thus heading H and elevation E can already be deter-
mined from the first column vector of R, while for the bank
angle B the complete rotation matrix must be determinable.

It is not always possible to determine the complete 3 × 3
attitude matrix R. It depends on the span of the baselines
and thus on the rank of X , whether or not R can be fully or
partially recovered. For the rank of X we have

1 ≤ rank(X) = rank(B) = q ≤ min(3, r) (4)

The two baseline matrices X and B have the same rank, since
R has full column rank. The baselines achieve their full span
if q = min(3, r). In that case, one baseline spans R

1, two
baselines span R

2 and three or more baselines span R
3. A

less than full span is achieved if q < min(3, r), in which
case matrix B of (1) is rank deficient.

In order to avoid working with a rank deficient matrix B,
as might happen with formulation (1), we will work from
now on with the formulation

X = RB, X ∈ R
3×r , R ∈ O

3×q , B ∈ R
q×r (5)

in which O
3×q denotes the set of 3×q matrices of which the

q column vectors form an orthonormal span. The difference
between this formulation and that of (1) is that now the num-
ber of orthonormal columns of R has been set equal to the
rank of X . This formulation has thus eliminated the indeter-
minable part of R in (1) when rank of X is less than min(3, r).
That the same symbols are used in (1) and (5) should not pose
a problem. If q = 3, then there is no difference between (1)
and (5).

In case of GNSS attitude determination, matrix X is esti-
mated from GNSS data, while matrix B, describing the rela-
tive geometry of the r + 1 body points in the body frame, is
assumed given. Once a GNSS-estimate of X is available, say
X̌ , an estimate of the attitude-matrix R can be determined in
a least-squares (LS) sense as

Ř = arg min
R∈O3×q

||vec(X̌ − RB)||2Q X̌ X̌
(6)

This problem can be solved analytically in case Q X̌ X̌ is
a scaled unit matrix, see e.g. (Wahba 1965; Schonemann
1966; Wertz 1984). In our present case, however, the vari-
ance matrix will be fully populated, thus requiring that the
nonlinear least-squares problem (6) is solved using one of the
iterative descent methods, like the Gauss–Newton method,
having a linear rate of convergence, or the Newton method,
having a quadratic rate of convergence, see e.g. (Teunissen
1990). The analytical solution of ‘Wahba’s problem’ may
then serve as initialization of the iteration.

In order to determine a precise attitude Ř, the antenna-
geometry B needs to be properly chosen and the input X̌ (cf.
6) needs to be as precise as possible. To realize the most pre-
cise X̌ with GNSS, requires the use of its very precise carrier
phase data. However, to fully exploit the high-precision of
the carrier phase data, one needs to be able to successfully
resolve their unknown double-differenced cycle ambiguities
as integers. Integer ambiguity resolution plays therefore a
pivotal role in precise GNSS attitude determination.
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2.2 The GNSS array model

We now formulate the GNSS array model and show how
the GNSS observables can be linked to matrix X of (5). We
assume that the body is equipped with a body-fixed array of
r +1 GNSS antennas all tracking the same s +1 satellites on
the same f frequencies. The geometry of the relative antenna
positions in the body-frame is assumed given by the q × r
matrix B of (5). Furthermore, we assume the array-size to
be such that the differential atmospheric delays (troposphere
and ionosphere) between the antennas can be neglected. With
these assumptions, we can formulate the single-epoch, multi-
frequency GNSS array model in multivariate form as

E(Y ) = M X + N Z , X ∈ R
3×r , Z ∈ Z

f s×r (7)

with Y the 2 f s × r double-differenced (DD) data matrix,
(M, N ) the 2 f s × (3 + f s) design matrix, X ∈ R

3×r the
unknown real-valued baseline matrix and Z ∈ Z

f s×r the
unknown integer ambiguity matrix. The carrier phase and
pseudo range data matrix is structured as Y = [Y T

φ , Y T
p ]T,

with Yφ = [yφ;1, . . . , yφ;r ] and Yp = [yp;1, . . . , yp;r ],
where yφ;α = [yT

φ;α,1, . . . , yT
φ;α, f ]T and yp;α = [yT

p;α,1, . . . ,

yT
p;α, f ]T are the multi-frequency f s × 1 vectors of DD

phase and code observables of baseline α. For the entries
of the design matrix (M, N ), we have M = (e2 f ⊗ G) and
N = (L⊗Is), with G the s×3 matrix of unit direction vectors
that capture the DD relative receiver-satellite geometry and
2 f × f matrix L = [ΛT, 0T]T, with Λ = diag(λ1, . . . , λ f )

the diagonal wavelength matrix, having the entries λ j =
c/ f j , j = 1, . . . , f (c is the speed of light; f j is the j th
frequency).

Note that the above multivariate formulation assumes the
same geometry matrix G for all baselines in the array. Hence,
it is assumed that all array antennas ’see’ the same satellite in
the same direction. This approximation is good enough for
our application, since the array size is assumed sufficiently
small (e.g., less than 100 m) in relation to the high altitudes
of GNSS satellites (about 20,000 km).

The dispersion of the GNSS array data matrix is assumed
given by the 2 f sr × 2 f sr variance matrix

D(vec(Y )) = P ⊗ Q (8)

where

P = DT
r Qr Dr , Q = blockdiag(QΦ, Q P )

QΦ = Q f ⊗ DT
s Qφ Ds, Q P = Q f ⊗ DT

s Q p Ds (9)

The matrices Qr , Q f , Qφ and Q p are co-factor matrices and
the matrices DT

r and DT
s are differencing matrices. With the

(s + 1)× (s + 1) matrices Qφ and Q p, the relative precision
contribution of the undifferenced phase and code data is cap-
tured. They may also include the satellite elevation depen-
dency of dispersion, by for instance, in case of Qφ , using the

diagonal matrix Qφ = σ 2
φdiag[sin−2(ε1), . . . , sin−2(εs+1)],

with εi being the elevation of satellite i and σ 2
φ being the

undifferenced phase variance at zenith.
The s × (s + 1) differencing matrix DT

s transforms un-
differenced observables into between-satellite single-differ-
enced observables. For example, if the last satellite is taken
as reference (pivot), then DT

s = [Is,−es]. The matrices Q f

and Qr capture the dispersion contribution of the different
frequencies and different antenna/receivers. For instance, if
the array is equipped with antennas of different quality, then
the (r + 1) × (r + 1) matrix Qr can be used to capture the
relative receiver quality. The r × (r + 1) differencing matrix
DT

r transforms between-satellite single-differenced observ-
ables into DD observables. For example, if the first antenna
is taken as reference (master), then DT

r = [−er , Ir ].

2.3 The nonlinearity of the GNSS compass and attitude
model

The multivariate GNSS attitude model is formed by the equa-
tions (5), (7) and (8). It is a nonlinear model due to the pres-
ence of the orthonormal matrix R in (5). This nonlinearity
is of a quadratic nature as can be seen when eliminating R
from (5) using RT R = Iq .

2.3.1 Quadratic compass model

To get some appreciation for the nonlinearity involved, we
first consider the single-baseline case. For r = 1, we have
xTx = bTb = c (X = x, B = b). Hence, the multivari-
ate model reduces then to the univariate, quadratically con-
strained, single-baseline model

E(y) = Mx + N z, xTx = c, D(y) = P Q (10)

with y ∈ R
2 f s, x ∈ R

3 and z ∈ Z
f s . P is now a scalar. With

Qr = I2 (two receivers of same quality) its value is P =
[−1, 1][−1, 1]T=2. Model (10) is known as the nonlinear
GNSS Compass model (Park and Teunissen 2009; Teunissen
2010). Once x has been ambiguity resolved, precise esti-
mates of heading H and elevation E of the baseline can be
determined. The quadratic constraint in (10) is a length con-
straint on the baseline vector. It implies that the baseline
vector is constrained to lie on a sphere with known radius,
S = {x ∈ R

3| ||x || = √
c}.

To determine the solution of (10) in a least-squares (LS)
sense, we need to solve the quadratically-constrained (mixed)
integer least-squares (QC-ILS) problem

min
x∈S,z∈Z f s

‖y − Mx − N z‖2
P Q = ||ê||2P Q

+ min
z∈Z f s

(
‖ẑ − z‖2

Qẑẑ
+ min

xTx=c
‖x̂(z) − x‖2

Qx̂(z)x̂(z)

)
(11)
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in which ê = y − Mx̂ − N ẑ is the LS-residual vector of
the unconstrained model, i.e. model (10) without integer and
quadratic constraints; x̂ and ẑ are the unconstrained mini-
mizers of ||y − Mx − N z||2P Q , having variance-covariance

matrices Qx̂x̂ , Qx̂ẑ and Qẑẑ , and x̂(z) = x̂ − Qx̂ẑ Q−1
ẑ ẑ (ẑ − z)

is the conditional LS-solution having Qx̂(z)x̂(z) = Qx̂x̂ −
Qx̂ẑ Q−1

ẑ ẑ Qẑx̂ as variance matrix. The dependence on z is
made explicit through the argument in the notation of x̂(z).

If we denote the minimizer of the third term on the right
hand side of (11) as x̌(z) = arg minx∈S ‖x̂(z) − x‖2

Qx̂(z)x̂(z)
,

then the minimizers ž ∈ Z
f s and x̌ ∈ R

3 of the QC-ILS
problem (11) follow as

ž = arg min
z∈Z f s

F(z) and x̌ = x̌(ž) (12)

with the ambiguity objective function given as

F(z) = ||ẑ − z||2Qẑẑ
+ ||x̂(z) − x̌(z)||2Qx̂(z)x̂(z)

(13)

This is a nonstandard ambiguity objective function. It is non-
standard due to the presence of the second term on the right
hand side of (13). This term is absent in case one would esti-
mate the integer ambiguities of model (10) without taking the
quadratic constraint into account. In that case the ambiguity
objective function would be given as E(z) = ||ẑ − z||2Qẑẑ

.
To appreciate the additional complexity that the quadratic

constraint of the GNSS compass model brings to integer
ambiguity resolution, we compare the two ambiguity objec-
tive functions F(z) and E(z). First note that F(z), in contrast
to E(z), not only depends on the ambiguity solution ẑ, but
also on the baseline solution x̂ . Thus both ẑ and x̂ are needed
as input for the integer minimizer of F(z).

The term by which F(z) differs from E(z), measures the
distance, in the metric of Qx̂(z)x̂(z), between x̂(z) and the
sphere S. Hence, potential integer candidates z ∈ Z

f s are
now not only downweighted if they are further away from the
float solution ẑ, as is the case with E(z), but also if their cor-
responding conditional baseline x̂(z) is further apart from the
sphere S. As demonstrated in the experiments of (Teunissen
et al. 2011), it is this additional penalty in the objective func-
tion that allows for the much higher success rates as compared
to the success rates obtained with the unconstrained model.

This much improved performance comes at the cost of
having to solve a more complex problem. The term by which
F(z) differs from E(z), makes F(z), in contrast to E(z), a
nonquadratic function in z. Hence, its search space, ΩF =
{z ∈ Z

f s |F(z) ≤ χ2 ∈ R
+}, will not be ellipsoidal, thus

complicating the integer search for ž. To cope with this addi-
tional complexity, two different search strategies have been
developed, an expansion and a shrinkage strategy, see (Park
and Teunissen 2009; Teunissen 2010).

Not only are the contour surfaces of F(z) more complex
than those of E(z), also the evaluation of F(z) is more time
consuming than that of E(z). The presence of the second

term in (13) implies that x̌(z) needs to be computed every
time F(z) is evaluated. Since the computation of the nonlin-
ear least-squares solution x̌(z) is already nontrivial by itself
(geometrically it can be depicted as the point where the ellip-
soid E = {x ∈ R

3| ‖x̂(z) − x‖2
Qx̂(z)x̂(z)

= constant} just
touches the sphere S), the presence of this second term is a
potential threat for the computational efficiency of the integer
search. In the constrained LAMBDA method this problem is
solved by making use of easier-to-compute bounding func-
tions of F(z).

2.3.2 Quadratic attitude model

The multivariate generalization of (10) follows by setting
XT X = BT B = C . This gives the multivariate, quadrati-
cally constrained (mixed) integer linear model

E(Y )= M X +N Z , XT X =C, D(vec(Y )) = P ⊗Q (14)

with Y ∈ R
2 f s×r , X ∈ R

3×r and Z ∈ Z
f s×r . This model

formulation is equivalent to that of the general multivariate
GNSS attitude model (cf. 5, 7 and 8) for q = r ≤ 3, that is,
when B is invertible.

In analogy with (12) and (13), one can show (cf. 38) that
the QC-ILS solution of the multivariate model (14) is given as

Ž = arg min
Z∈Z f s×r

H(Z) and X̌ = X̌(Ž) (15)

in which the multivariate ambiguity objective function is
given as

H(Z)=||vec(Ẑ − Z)||2Q Ẑ Ẑ
+||vec(X̂(Z)− X̌(Z))||2Q X̂(Z)X̂(Z)

(16)

where

X̌(Z) = arg min
XT X=C

||vec(X̂(Z) − X)||2Q X̂(Z)X̂(Z)
(17)

Again the presence of the second, nonquadratic, term in
the ambiguity objective function (cf. 16) results in a much
improved success-rate performance as compared to both
the unconstrained model and the single-baseline constrained
model (10). The excellent success-rate performance of the
multivariate ambiguity objective function (16) has been dem-
onstrated for single-frequency, epoch-by-epoch, GNSS-only
attitude determination in (Giorgi et al. 2010, 2011). The pres-
ence of the non-quadratic term in (16) also increases the com-
putational complexity, which in the multivariate constrained
LAMBDA method is taken care of through the use of multi-
variate bounding functions (Giorgi et al. 2011).

2.4 Linear and quadratic constraints

The quadratically constrained model (14) is only equivalent
to the general nonlinear GNSS attitude model (cf. 5, 7, 8)
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if matrix B is square and invertible, that is, if q = r ≤ 3.
Although such dual-, triple- and quadrupel-antenna configu-
rations do cover a large part of all GNSS attitude applications,
they do not cover all of them. Antenna geometries that are not
covered by q = r ≤ 3, are, for instance, ‘degenerate’ config-
urations where all of the three or more antennas are placed in
a straight line (q = 1, r > 1), or where all of the four or more
antennas are placed in a plane (q = 2, r > 2). But also all
multi-antenna configurations that consist of more than four
antennas (r > 3) are not covered by formulation (14).

The following lemma gives a complete description of the
constraints involved in the general GNSS attitude model (cf.
5, 7, 8), thus also of the extra constraints that occur when
either q < min(3, r) or r > 3 is true.

Lemma 1 (Orthonormal matrix parametrization) Let X be a
3 × r matrix and B be a q × r matrix of rank(B) = q. Then
the equivalent implicit form of the matrix equation

X = RB, R ∈ O
3×q (18)

is given by

X S = 0 and (XT )T(XT ) = Iq (19)

where S is an r × (r − q) basis matrix of the null space of B
(BS = 0) and T is an r × q right-inverse of B (BT = Iq ).

Proof The proof is given in the Appendix.

This lemma shows that in addition to the quadratic con-
straints, also linear constraints may be present. The total
number of constraints described by the orthonormal matrix
parametrization (18) is equal to 1

2 q(q − 5) + 3r . Of these
constraints, 3(r − q) are linear and 1

2 q(q + 1) are quadratic.
There are at most six quadratic constraints (q = 3). There
is only one quadratic constraint if q = 1 and there are three
quadratic constraints if q = 2. The linear constraints are
only present when the number of baselines is larger than the
dimension of their span, r > q. This means for linear con-
straints to be present, that more than two antennas are needed
in case the antennas are all placed along a straight line and
that more than three antennas are needed in case the antennas
are all placed in a plane. In all other cases, more than four
antennas will be needed. And in such cases, each additional
single antenna will introduce three extra linear constraints.

3 The affine constrained GNSS attitude model

3.1 The affine model formulation

If we neglect the 1
2 q(q +1) quadratic constraints of (19) and

thus only take the 3(r − q) linear constraints of X S = 0
into account, the multivariate GNSS attitude model takes the
linear form

E(Y ) = M X + N Z , X S = 0, D(vec(Y )) = P ⊗ Q (20)

with Y ∈ R
2 f s×r , M ∈ R

2 f s×3, N ∈ R
2 f s× f s, S ∈

R
r×(r−q), P ∈ R

r×r , Q ∈ R
2 f s×2 f s and the unknown

parameter matrices X ∈ R
3×r and Z ∈ Z

f s×r . This model
will be referred to as the affine constrained GNSS attitude
model, since the linear matrix constraint X S = 0 implies
the formulation of an affine transformation between body-
and reference-frame. This can be seen as follows. Since the
orthogonal complement of the null space of a matrix is equal
to the range space of its transpose, N (X)⊥ = R(XT), it fol-
lows from S being a basis matrix of N (X) and BT being a
basis matrix of R(XT), that we have the equivalence

X S = 0 ⇐⇒ X = RB for some R ∈ R
3×q (21)

Hence, working with the implicit matrix constraint X S = 0
is equivalent to dropping the orthonormality constraints on
R, thus effectively turning the transformation X = RB into
an affine transformation.

In the following, we work interchangeably with the
implicit formulation (20) and with its parametric counterpart

E(Y ) = M X + N Z , X = RB, D(vec(Y )) = P ⊗ Q (22)

in which the affine-attitude matrix R ∈ R
3×q can replace the

baseline matrix X ∈ R
3×r as the unknown parameter matrix.

The LS-solutions of (22) can also be used to study the perfor-
mance of the weaker unconstrained model. By substituting
B = I in the LS-solutions of the affine-constrained model,
one automatically obtains the corresponding unconstrained
LS-solutions.

The LS-solution of model (20) is defined as

[X̌T
c , ŽT

c ]T = arg min
X∈R3×r ,Z∈Z f s×r ,X S=0

×||vec(Y − [M, N ][XT, ZT]T)||2QY Y
(23)

Note that there are two types of constraints involved. The
linear constraints on the baseline matrix X (X S = 0) and the
integer constraints on the ambiguity matrix Z (Z ∈ Z

f s×r ).
Although both type of constraints play an important role in
strengthening the attitude model, the role they have to play
is different. As it is shown in the next sections, the primary
purpose of the integer constraints is to be able to determine a
precise attitude solution, while that of the linear constraints
is to ensure that this can be done with sufficient probability
of success.

Also note that the affine constraints are taken as ‘hard’
constraints. It is therefore assumed that the a-priori determi-
nation of the body-frame baseline matrix B, or at least of its
null space, can be done with negligible uncertainty. Would
this not be the case, then a weighted approach, somewhat
similar to the one given in (Teunissen 2010), will need to be
followed.

In order to determine X̌c and Žc of (23), we first determine
the so-called ‘float’ and ‘fixed’ solutions. The LS-solutions
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of (20) and (22) are referred to as ‘float’ solutions if they
are obtained assuming Z to be real-valued instead of inte-
ger-valued. The LS baseline matrix solution is referred to as
a ‘fixed’ solution if it is obtained assuming Z known. First
we derive the ‘float’ solutions.

3.2 Unconstrained and constrained float baseline matrix

The affine-constrained float LS-solutions of model (22) are
denoted as R̂c and Ẑc, respectively. They follow from solving
the system of normal equations,
[

B P−1 BT ⊗ MT Q−1 M B P−1 ⊗ MT Q−1 N
P−1 BT ⊗ N T Q−1 M P−1 ⊗ N T Q−1 N

] [
vec(R̂c)

vec(Ẑc)

]

=
[

(B P−1 ⊗ MT Q−1)vec(Y )

(P−1 ⊗ N T Q−1)vec(Y )

]
(24)

First we consider R̂c. After reduction of the above normal
equations, we obtain the reduced normal equations

[B P−1 BT ⊗ M̄T Q−1 M̄]vec(R̂c)

= [B P−1 ⊗ M̄T Q−1]vec(Y ) (25)

with M̄ = P⊥
N M and the projectors P⊥

N = I2 f s − PN

and PN = N (N T Q−1 N )−1 N T Q−1. From the reduced nor-
mal system (25), the LS-solution R̂c and its variance matrix
Q R̂c R̂c

= D(vec(R̂c)) follow as

R̂c = [(M̄T Q−1 M̄)−1 M̄T Q−1][Y ][P−1 BT(B P−1 BT)−1]
Q R̂c R̂c

= (B P−1 BT)−1 ⊗ (M̄T Q−1 M̄)−1 (26)

From these expressions, the unconstrained solution is eas-
ily obtained by setting B = I . In doing so, we find that the
unconstrained baseline-matrix solution X̂ and constrained
affine-attitude solution R̂c, together with their variance matri-
ces, are given and linked as

X̂ = (M̄T Q−1 M̄)−1 M̄T Q−1Y, Q X̂ X̂ = 1

2
P ⊗ Qx̂x̂

R̂c = X̂ P−1 BT(B P−1 BT)−1, Q R̂c R̂c
= 1

2
K ⊗ Qx̂x̂ (27)

where K = (B P−1 BT)−1 and Qx̂x̂ = 2(M̄T Q−1 M̄)−1 is
the variance matrix of a float single-baseline solution (assum-
ing its two antennas of equal quality). The factor 1

2 in (27)
compensates for the factor 2 of Qx̂x̂ .

Note that the expressions of (27) facilitate parallel process-
ing. The data of each baseline is mapped by the same matrix
(M̄T Q−1 M̄)−1 M̄T Q−1 to the baseline matrix X̂ , while the
coordinates of each of its baseline vectors is mapped by the
same matrix P−1 BT(B P−1 BT)−1 to the column vectors of
R̂c. Also note that the contributions from the receiver-satellite
geometry (via M) and the antenna-array geometry (via B) are
clearly visible in the dispersion of R̂c. Although the receiver-
satellite dispersion contribution will be difficult to manipu-
late by a user, the contribution of the antenna-geometry can

be changed so as to obtain a favourable contribution to the
dispersion of R̂c.

The effect that the affine constraints have on the baseline
matrix, can be made explicit by substituting the expression
for R̂c (cf. 27) into X̂c = R̂c B. This gives

X̂c = X̂ P⊥
S , Q X̂c X̂c

= 1
2 P P⊥

S ⊗ Qx̂x̂ (28)

where P⊥
S = P−1 BT(B P−1 BT)−1 B. The projector P⊥

S
can be expressed in S as P⊥

S = Ir − PS , where PS =
S(ST P S)−1ST P . Note that (28) is the solution one gets when
solving the multivariate linear model of condition equations
E(X̂ S) = 0, D(vec(X̂)) = 1

2 P ⊗ Qx̂x̂ in a LS-sense.

3.3 Unconstrained and constrained float ambiguity matrix

Now we consider the estimation of the ambiguity matrix Z .
First we determine the unconstrained float ambiguity estima-
tor Ẑ . This matrix estimator and its variance matrix follow
from solving the normal equations (24) for B = I as

Ẑ = (N̄ T Q−1 N̄ )−1 N̄ T Q−1Y, Q Ẑ Ẑ = 1
2 P ⊗ Qẑẑ (29)

in which Qẑẑ = 2(N̄ T Q−1 N̄ )−1 is the single-baseline ambi-
guity variance matrix and where N̄ = P⊥

M N , with projectors
P⊥

M = I2 f s − PM and PM = M(MT Q−1 M)−1 MT Q−1.
To determine the constrained float ambiguity estimator,

again the normal equations (24) can be used. However, in
order to make the difference between Ẑc and Ẑ explicit, it is
more instructive to use the relation

vec(Ẑc) = vec(Ẑ) − Q Ẑ X̂ Q−1
X̂ X̂

vec(X̂ − X̂c) (30)

Since Q Ẑ X̂ Q−1
X̂ X̂

= Ir ⊗ Qẑx̂ Q−1
x̂ x̂ and X̂ − X̂c = X̂ PS (cf.

28), it follows that

Ẑc = Ẑ − Qẑx̂ Q−1
x̂ x̂ X̂ PS

Q Ẑc Ẑc
= 1

2
P ⊗ Qẑẑ − 1

2
P PS ⊗ Qẑx̂ Q−1

x̂ x̂ Qx̂ ẑ

(31)

This result clearly shows the contribution of the affine con-
straints to the float ambiguity solution. From comparing
(29) with (31), it follows that Q Ẑ Ẑ − Q Ẑc Ẑc

= 1
2 P PS ⊗

Qẑx̂ Q−1
x̂ x̂ Qx̂ ẑ . The impact this precision improvement has on

ambiguity resolution will be shown in Sect. 4.
The contribution of the affine constraints to the estimators

X̂c (cf. 28) and Ẑc (cf. 31), is felt through the presence of
the projector PS . Since a projector is invariant for the choice
of basis matrix of its range, matrix PS remains unchanged if
basis matrix S is replaced by any other basis matrix of the null
space of B. Thus, if S̃ = SU , then PS = S(ST P S)−1ST P =
S̃(S̃T P S̃)−1 S̃T P , for any invertible matrix U of order (r −
q) × (r − q). Similarly we have, if B̃ = V B, then P⊥

S =
P−1 BT(B P−1 BT)−1 B = P−1 B̃T(B̃ P−1 B̃T)−1 B̃, for any
invertible matrix V of order q × q. Hence, since Ẑc remains
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unchanged if we replace B by V B for any regular trans-
formation V , the constrained float ambiguity solution is not
affected by a change of body-frame. This implies, since the
constrained float solution is the input for ambiguity resolu-
tion, that the ambiguity success-rate is invariant for a change
of body-frame. But such a change does affect, of course, the
solution for the affine-attitude matrix (cf. 27).

3.4 Unconstrained and constrained fixed baseline matrix

Now we consider the case that Z is known, referred to
as the fixed solution. The corresponding unconstrained and
constrained LS-solutions are denoted as X̂(Z) and R̂c(Z),
respectively. Their dependence on the value taken for Z
is explicitly shown in their argument. The Z -fixed LS-
solution of model (22), together with its variance matrix
Q R̂c(Z)R̂c(Z)

= D(vec(R̂c(Z))), follow from solving the sys-
tem of normal equations

[B P−1 BT ⊗ MT Q−1 M]vec(R̂c(Z))

= [B P−1 ⊗ MT Q−1]vec(Y − N Z) (32)

as

R̂c(Z) = M−[Y − N Z ]B−

Q R̂c(Z)R̂c(Z)
= (B P−1 BT)−1 ⊗ (MT Q−1 M)−1 (33)

with left-inverse M− = (MT Q−1 M)−1 MT Q−1 and right-
inverse B− = P−1 BT(B P−1 BT)−1. Again the uncon-
strained solution is obtained by setting B = I . In doing
so, we find that X̂(Z) and R̂c(Z) are given as

X̂(Z) = M−[Y − N Z ] and R̂c(Z) = X̂(Z)B− (34)

with variance matrices

Q X̂(Z)X̂(Z)
= 1

2 P ⊗ Qx̂(z)x̂(z)

Q R̂c(Z)R̂c(Z)
= 1

2 (B P−1 BT)−1 ⊗ Qx̂(z)x̂(z)

where Qx̂(z)x̂(z) = 2(MT Q−1 M)−1 is the variance matrix
of a fixed single-baseline solution (again assuming its two
antennas of equal quality). In analogy with (28), we have for
X̂c(Z) = R̂c(Z)B,

X̂c(Z) = X̂(Z)P⊥
S , Q X̂c(Z)X̂c(Z)

= 1
2 P P⊥

S ⊗ Qx̂(z)x̂(z)

(35)

Since Z is assumed known, the dispersion of X̂c(Z) (or
X̂(Z)) is, of course, better than that of X̂c (or X̂ ). Importantly,
in case of GNSS, this difference is very significant. In case
of GNSS, the dispersion of X̂c(Z) is driven by the very pre-
cise carrier-phase measurements, while the dispersion of X̂c

is driven by the relatively low precision code measurements.
Denoting the phase variance as σ 2

φ and the code variance as

σ 2
p , the variance matrices of the two estimators can shown to

be related as (Teunissen 1997)

Q X̂c(Z)X̂c(Z)
≈ σ 2

φ

σ 2
p

Q X̂c X̂c
(36)

where, in case of current GPS, σ 2
φ/σ 2

p ≈ 10−4. This shows, if
one would be able to determine Z with negligible uncertainty,
that a very large precision improvement in the determinations
of the array-baseline matrix X and the affine-attitude matrix
R can be realized. Determining Z with such negligible uncer-
tainty is the goal of integer ambiguity resolution.

3.5 Unconstrained and constrained integer least-squares
solution

With the expressions of the ‘float’ and ‘fixed’ baseline and
ambiguity matrix solutions given, we are now in a position
to derive the corresponding unconstrained and constrained
integer least-squares solutions.

3.5.1 Unconstrained integer least-squares

We start with the unconstrained ILS solution

[X̌T, ŽT]T = arg min
X∈R3×r ,Z∈Z f s×r

×||vec(Y − [M, N ][XT, ZT]T)||2QY Y
(37)

In order to show how this solution can be determined from the
unconstrained ‘float’ solutions, use is made of the following
lemma.

Lemma 2 (Multivariate Orthogonal Decomposition) Let
X̂ , Ẑ , X̂(Z) and their variance matrices be given as in (27),
(29) and (34), and let Ê = Y − M X̂ − N Ẑ. Then

||vec(Y − M X − N Z)||2QY Y
= ||vec(Ê)||2QY Y

+||vec(Ẑ − Z)||2Q Ẑ Ẑ
+ ||vec(X̂(Z) − X)||2Q X̂(Z)X̂(Z)

(38)

Proof The proof is given in the Appendix.

Expression (38) decomposes the multivariate objective func-
tion into three terms, the first of which is a constant, the sec-
ond of which only varies with Z , and the third of which varies
with both X and Z . With the aid of this decomposition, the
minimization of the objective function can be decomposed
as well, namely as

min
X∈R3×r ,Z∈Z f s×r

||vec(Y − M X − N Z)||2QY Y

= ||vec(Ê)||2QY Y
+ min

Z∈Z f s×r

(
||vec(Ẑ − Z)||2Q Ẑ Ẑ

+ min
X∈R3×r

||vec(X̂(Z) − X)||2Q X̂(Z)X̂(Z)

)
(39)

Since the third term on the right-hand side can be made zero
for any Z , the unconstrained ILS-estimators Ž and X̌ follow
as

Ž = arg min
Z∈Z f s×r

||vec(Ẑ − Z)||2Q Ẑ Ẑ
, X̌ = X̂(Ž) (40)
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This multivariate ILS problem can be solved by standard
means, since the ambiguity objective function is quadratic in
vec(Z) (Teunissen 1995). Note, if the baseline matrix would
be required to satisfy the matrix constraint XT X = C as in
(14), that the third term on the right-hand side of (39) would
not vanish and the ambiguity objective function would be
given by (16), instead of by the quadratic one of (40).

3.5.2 Constrained integer least-squares

To determine the constrained ILS estimators, Žc and X̌c (cf.
23), we substitute X = RB into (39) and minimize over
R ∈ R

3×q instead of over X ∈ R
3×r . This gives

min
R∈R3×q ,Z∈Z f s×r

||vec(Y − M RB − N Z)||2QY Y

= ||vec(Ê)||2QY Y
+ min

Z∈Z f s×r

(
||vec(Ẑ − Z)||2Q Ẑ Ẑ

+ min
R∈R3×q

||vec(X̂(Z) − RB)||2Q X̂(Z)X̂(Z)

)
(41)

Now, in contrast to (39), the third term on the right-hand side
does not vanish anymore. This term can be further decom-
posed, in analogy with (38), as

||vec(X̂(Z) − RB)||2Q X̂(Z)X̂(Z)
= ||vec(X̂(Z)PS)||2Q X̂(Z)X̂(Z)

+||vec(R̂c(Z) − R)||2Q R̂c(Z)X̂c(Z)
(42)

with residual matrix X̂(Z)PS = X̂(Z) − R̂c(Z)B (cf. 35).
From substituting (42) into (41), it follows that the con-
strained ILS solution is given as

Žc = arg min
Z∈Z f s×r

J (Z), X̌c = R̂c(Žc)B (43)

with the ambiguity objective function given as

J (Z) = ||vec(Ẑ − Z)||2Q Ẑ Ẑ
+ ||vec(X̂(Z)PS)||2Q X̂(Z)X̂(Z)

(44)

Compare this constrained ILS solution with its unconstrained
counterpart (40). Note, importantly, that the ambiguity objec-
tive function of Žc differs from that of Ž by the presence of
the PS-dependent second term in (44). The presence of both
constraints, the integer-constraint and the affine-constraint, is
therefore felt when evaluating this objective function. In inte-
ger minimizing J (Z) not only the weighted distance between
Z and Ẑ counts (as is the case in 40), but also by how much
X̂(Z) violates the affine-constraint X S = 0. Two types of
weights are involved, the inverse of Q Ẑ Ẑ and the inverse of
Q X̂(Z)X̂(Z)

. As remarked earlier, in case of GNSS, the var-

iance matrix of X̂(Z) is driven by the very precise carrier-
phase data, while that of Ẑ is driven by the relatively poor
precision code data. Hence, the second term in the ambiguity
objective function (44) receives a relatively large weight and

contributes therefore, as shown in Sect. 4, significantly to the
improved success rate performance of Žc over Ž .

3.5.3 The integer search

Just like the unconstrained ILS problem (40), also the con-
strained ILS problem (43) can be solved using standard meth-
ods. This is the advantage the affine-constrained ambiguity
objective function J (Z) of (43) has over the nonquadrat-
ic ambiguity objective function H(Z) of (16). We illustrate
this by showing how the two quadratic terms of J (Z) can
be combined into one single quadratic form. For that pur-
pose, we make use of a different orthogonal decomposition
then the one used in (41). Instead of using the unconstrained
‘float’ and ‘fixed’ solutions, Ẑ and X̂(Z), one can also use
the constrained ‘float’ and ‘fixed’ solutions, Ẑc and R̂c(Z),
to decompose the objective function. We therefore have, in
analogy of (38), the orthogonal decomposition

||vec(Y − M RB − N Z)||2QY Y
= ||vec(Êc)||2QY Y

+||vec(Ẑc − Z)||2Q Ẑc Ẑc
+ ||vec(R̂c(Z) − R)||2Q R̂c(Z)R̂c(Z)

(45)

in which Êc = Y − M R̂c B − N Ẑc is the affine-constrained
LS-residual matrix. From equating this alternative decompo-
sition to the original one (38), it follows that

||vec(Ê)||2QY Y
+ J (Z) = ||vec(Êc)||2QY Y

+||vec(Ẑc − Z)||2Q Ẑc Ẑc
(46)

This shows that the integer minimizer Žc of J (Z) can indeed
be found by means of integer minimizing a single quadratic
form as

Žc = arg min
Z∈Z f s×r

||vec(Ẑc − Z)||2Q Ẑc Ẑc
(47)

Hence, just like in the unconstrained case (40), the affine-con-
strained ILS ambiguity matrix Žc can be computed efficiently
by standard means.

3.5.4 Multi-epoch solution

The solutions given so far are single-epoch solutions. They
therefore apply to instantaneous ambiguity resolution. In case
of multiple epochs, the inclusion of time in the affine-con-
strained GNSS attitude model (22) leads to the formulation

E(Y (t)) = M(t)X (t) + N Z , X (t) = R(t)B

D(vec(Y (t))) = P ⊗ Q(t) (48)

in which the time dependence is made explicit through the use
of the argument t . In (48) the time-invariant variates are: the
ambiguity matrix Z , its coefficient matrix N , the body-frame
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array geometry B, and the relative quality of the array anten-
nas P . When solving (48) for multiple epochs, one obtains,
in analogy with (31), a multi-epoch, affine-constrained float
ambiguity matrix solution, say Ẑc(t), with variance matrix
Q Ẑc(t)Ẑc(t)

. This solution will be more precise than the sin-
gle-epoch solutions treated so far, since it will have profitted
from the assumed ambiguity time-invariance in (48). The
corresponding ILS solution follows from replacing Ẑc and
Q Ẑc Ẑc

, in (47), by Ẑc(t) and Q Ẑc(t)Ẑc(t)
, respectively. Hence,

the multi-epoch, affine-constrained ILS ambiguity matrix can
also be computed by standard means.

Since the ambiguities are the only parameters in (48), that
are assumed linked in time, the model becomes decoupled in
time once the integer ambiguity matrix is resolved. Hence,
once the ambiguity matrix can be assumed known, the ambi-
guity-resolved solutions for the attitude matrix R(t) can be
produced again on an epoch-by-epoch basis.

4 The affine constrained ambiguity dilution of precision

In this section, the ambiguity dilution of precision (ADOP) of
the affine-constrained GNSS attitude model is described and
analysed. A closed-form expression for it is derived, thus pro-
viding a very simple and insightful rule-of-thumb describing
the model’s instantaneous ambiguity resolution capabilities.

4.1 ADOP: definition and properties

The ADOP was introduced in (Teunissen 1997) as an easy-
to-compute scalar diagnostic to measure the intrinsic model
strength for successful ambiguity resolution. The ADOP is
defined as the square-root of the ambiguity variance matrix’
determinant taken to the power one over the number of DD
ambiguities. Thus if Qââ would be the n × n ambiguity var-
iance matrix, then its ADOP would read

ADOP = √|Qââ |
1
n [cycle] (49)

No actual measurements are needed to compute the ADOP,
only the ambiguity variance matrix. Hence, the ADOP can
be used as a design parameter (Teunissen and Odijk 1997).
In the following, we will analyse the ADOPs for â = vec(Ẑ)

and â = vec(Ẑc), respectively.
The ADOP has been used in (Skaloud 1998) and

(Scherzinger 2000, 2001) to analyse the benefits to ambi-
guity resolution of integrating INS with GPS, while in (Lee
et al. 2010), it has been used to investigate the combined
effect of GPS, INS and pseudolite integration. In (Vollath
et al. 2003), the ADOP was used to study the impact of the
number of GPS and Galileo carriers on ambiguity resolution,
while in (Jonkman and Teunissen 2001) it was used to analyse
geometry-free full ambiguity resolution for long baselines. In

(Wang et al. 2005), the ADOP was used to study the effect the
stochastic model has on ambiguity resolution, while in (Ong
2010) it was used to quantify the contribution to ambigu-
ity resolution of combining GPS with GLONASS. To study
the ambiguity resolution potential of low-cost, multi-GNSS
receiver data, the ADOP was used by Verhagen et al. (2010)
to capture the capabilities of single-frequency, GPS-Galileo
integration.

Note that the above ambiguity-DOP definition differs
from the position-related DOP measures, such as the posi-
tion (PDOP), the vertical (VDOP) or the horizontal dilution
of precision (HDOP), see e.g. (Hofmann-Wellenhof et al.
2008; Leick 2004; Strang and Borre 1997). These latter DOP
measures are all based on the trace of the variance matrix
of the coordinates, instead of on its determinant. In case of
ambiguities, however, the trace should not be used. First, the
trace of an ambiguity variance matrix is not invariant under
ambiguity transformations. Second, the trace does not take
the correlation between ambiguities into account, while it
is known that the DD ambiguities can be highly correlated,
especially in case of short observation times.

The ADOP has the important property that it is invari-
ant against the choice of ambiguity parametrization. Since
all admissible ambiguity transformations can be shown to
have a determinant of one, the ADOP does not change when
one changes the definition of the ambiguities. It therefore
measures the intrinsic precision of the ambiguities. In fact, it
measures the average ambiguity precision, since the ADOP
equals the geometric average of the sequential conditional
ambiguity standard deviations.

Another important property of the ADOP is its relation
to the volume of the ambiguity confidence ellipsoid and
the ambiguity search space. The volume of the n-dimen-
sional ellipsoid (â − a)T Q−1

ââ (â − a) ≤ χ2 is given as
Vn = χnUnADOPn where Un is the volume of the n-dimen-
sional unit sphere (Teunissen et al. 1996). Thus if the ADOP
gets smaller, the confidence ellipsoid gets smaller and the
multivariate PDF gets more peaked.

The ADOP can also be directly linked to the probabil-
ity of correct integer estimation, the ambiguity success-rate
(Teunissen 1998). Since the ADOP is a measure for the aver-
age ambiguity precision, the probability

PADOP =
[
2Φ

( 1

2ADO P

)
− 1

]n
(50)

with Φ(x) = ∫ x
−∞

1√
2π

exp
{− 1

2v2
}

dv, has been shown to
give a good approximation to the success-rate (Verhagen
2005; Ji et al. 2007). Figure 1 shows the PADOP as func-
tion of ADOP for varying levels of n (n = 1, . . . , 60). It
can be seen that the ADOP-based success rate decreases for
increasing ADOP and this decrease is steeper the more ambi-
guities are involved. In general, Fig. 1 shows that if ADOP
is smaller than about 0.10 cycle, PADOP becomes larger than
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Fig. 1 PADOP versus ADOP for varying number of DD ambiguities
1 ≤ n ≤ 60

0.999, while for ADOP smaller than 0.13 cycle, PADOP is
always better than 0.99.

4.2 The effect of the affine-constraints

The affine-constraints of the GNSS attitude model increases
the model’s capabilities of successful integer ambiguity res-
olution. To measure the effect these affine-constraints have
on the ADOP, we first need a general rule describing how
the ADOP is impacted by the presence of linear constraints.
The following theorem describes the effect arbitrary linear
constraints have on the ADOP.

Theorem 1 (The Constrained ADOP) Consider the linear
model E(y) = Aa + Bb, D(y) = Qyy. Let č and ĉ, with
variance matrices Qčč and Qĉĉ, be the LS-estimators of the
linear functions c = Cb, assuming the n-vector a known and
unknown, respectively. Furthermore, let ADOPC and ADOP
be the ambiguity-dilution-of-precision of the LS-estimators
of a, assuming c known and unknown, respectively. Then

ADOPC =
√

|Qčč|
|Qĉĉ|

1
n

ADOP (51)

Proof The proof is given in the Appendix.

This result shows that the effect of the constraint c = Cb on
the ADOP is driven by the ratio |Qčč|/|Qĉĉ| and thus by the
gain in precision of estimating c when knowing a. Thus the
effect these constraints have on the ADOP is driven by how
much better these constraints can be estimated once the ambi-
guities are known. If knowledge of a improves our ability of
estimating c = Cb, then so will knowledge of c improve the
ADOP. However, if the LS-estimators â and ĉ = Cb̂ would
be uncorrelated, then constraining c = Cb would do nothing
for improving the ADOP.

We now apply the above theorem to the affine-constrained
GNSS attitude model (20). The affine matrix constraint X S =
0 reads in matrix-vector form (ST⊗Ir )vec(X) = 0. Hence, in
order to apply the above theorem, we need the variance matrix
of (ST⊗ Ir )vec(X) for the two cases, X = X̂ and X = X̂(Z),
respectively. With (27) and (34), these two required variance
matrices follow as 1

2 ST P S ⊗ Qx̂x̂ and 1
2 ST P S ⊗ Qx̂(z)x̂(z),

respectively. The matrix ST P S is of order (r − q)× (r − q).
We therefore have

|Qčč|
|Qĉĉ| := | 1

2 ST P S ⊗ Qx̂(z)x̂(z)|
| 1

2 ST P S ⊗ Qx̂x̂ |
=

( |Qx̂(z)x̂(z)|
|Qx̂x̂ |

)r−q

(52)

where use is made of the Kronecker product property |A ⊗
B| = |A|b|B|a for any a × a matrix A and any b × b matrix
B. Since in our case the number of ambiguities is n = f sr ,
the following lemma follows from combining (51) and (52).

Lemma 3 (Impact of Affine Constraints) Let the affine-
constrained and unconstrained ADOP of the GNSS atti-

tude model (20) be given as ADOPAC = |Q Ẑc Ẑc
| 1

2 f sr and

ADOPUC = |Q Ẑ Ẑ | 1
2 f sr , respectively. Then, for r ≥ q,

ADOPAC =
(√

|Qx̂(z)x̂(z)|
|Qx̂x̂ |

) 1
f s (1− q

r )

ADOPUC (53)

Note that ADOPAC = ADOPUC when r = q. This is the
case, of course, when there are no affine-constraints, i.e. when
the number of baselines equals the dimension of their span.
From (53) it follows that the affine constraints have more
impact if the ratio |Qx̂(z)x̂(z)|/|Qx̂x̂ | is smaller. Thus it is the
gain in baseline precision due to ambiguity resolution that
drives the ADOP improvement. If there is no such gain, i.e.
|Qx̂(z)x̂(z)|/|Qx̂x̂ | = 1, then also no benefits will follow from
imposing the affine-constraints.

Table 1 shows the factor by which the ADOP improves
for a typical single-frequency scenario. It gives the ratio
ADOPAC/ADOPUC as function of the number of anten-
nas and satellites, assuming a phase-code variance ratio of
σ 2

φ/σ 2
p = 10−4. Note that the impact of the affine constraints

can be very significant indeed. Also note that the benefit of

Table 1 The ratio ADOPAC/ADOPUC, for a single-frequency array
( f = 1), having a three-dimensional span (q = 3) and phase-code
variance ratio σ 2

φ/σ 2
p = 10−4, as function of the number of antennas

(r + 1) and the number of tracked satellites (s + 1)

r = 3 r = 4 r = 5 r = 6

s = 3 1 .32 .16 .10

s = 4 1 .42 .25 .18

s = 5 1 .50 .33 .25

s = 6 1 .56 .40 .32
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558 P. J. G. Teunissen

having more antennas is felt more when fewer satellites are
tracked. This is an important property as it shows that the
improvement is targeted at where it is needed. The uncon-
strained ADOP will namely already improve significantly
when the number of tracked satellites increases.

4.3 The affine-constrained ADOP in closed form

We now present an easy-to-use expression for the affine-
constrained ADOP. It will exemplify the role of the vari-
ous contributing factors, such as phase- and code-precision,
number of frequencies and their wavelengths, and num-
ber of tracking antennas and tracked satellites. From it the
expected instantaneous ambiguity resolution performances
of one-dimensional, two-dimensional and three-dimensional
antenna arrays can be inferred. We have the following general
result.

Theorem 2 (The Affine Constrained ADOP) The ambigu-
ity-dilution-of-precision of the affine-constrained GNSS atti-
tude model (20) is given as

ADOPAC = vφ

λ̄

(√
|Qx̂x̂ |

|Qx̂(z)x̂(z)|

) q
f sr

(r ≥ q) (54)

with v2
φ = |DT

r Qr Dr | 1
r |Q f |

1
f |DT

s Qφ Ds | 1
s and λ̄ = (

∏ f
i=1

λi )
1
f .

The result (54) can be further simplified as follows. If
the co-factor matrices of the undifferenced phase and code
data are scaled versions of each other, Qφ = ε2 Q p, then
|Qx̂x̂ |/|Qx̂(z)x̂(z)| = (1 + 1/ε2)3. And if the co-factor matri-
ces Qr , Q f and Qφ are diagonal, with entries defined as
Q−1

r = diag[r1, . . . , rr+1], Q f = diag[ f1, . . . , f f ] and

σ 2
φ Q−1

φ = diag[s1, . . . , ss+1], then |Q f |
1
f = [∏ f

i=1 fi ]
1
f ,

|DT
r Qr Dr | 1

r = [(∑r+1
i=1 ri )/(

∏r+1
i=1 ri )] 1

r and |DT
s Qφ Ds | 1

s =
σ 2

φ [(∑s+1
i=1 si )/(

∏s+1
i=1 si )] 1

s .

Proof The proof is given in the Appendix.

Expression (54) can be used to determine other ADOPs as
well. In particular consider the two extremes of knowing
the complete array geometry in the reference frame versus
the unconstrained case of not knowing that geometry at all.
In the first case, Qx̂x̂ = 0 and the ADOP reduces to vφ/λ̄.
The other extreme of having no constraints corresponds with
r = q. In that case, expression (54) becomes the ADOP
of an unconstrained array or small multi-frequency GNSS
network. And it reduces to that of an unconstrained, multi-
frequency, single-baseline if r = q = 1.

Note that in the unconstrained case the dependence of the
ADOP on r , i.e. the number of baselines, is only felt, via vφ ,

through |DT
r Qr Dr | 1

2r . This dependence can be shown to be

rather weak however. If we assume all antennas to be of the
same quality and therefore take Qr = Ir+1, then

|DT
r Qr Dr | 1

2r = √
r + 1

1
r ∈ (1,

√
2] (55)

This shows that in the unconstrained case, one can not drive
the ADOP to much smaller values by working with much
larger r . The factor by which the ADOP can be made smaller
is at most only

√
2. This is in stark contrast with the effect

the number of satellites has on the unconstrained ADOP (cf.
54). This is why it is so relevant that in the constrained case
the improvement in the ADOP, for larger r , is particularly
happening when fewer satellites are tracked (cf. Table 1).

Corollary (ADOP rule-of-thumb) If Qr = Ir+1, Q f =
I f , Qφ = σ 2

φ Is+1 and Qφ = ε2 Q p, then the affine-con-
strained ADOP simplifies to

ADOPAC = σφ

λ̄

√
(r + 1)

1
r (s + 1)

1
s

⎛
⎝

√√√√1 + σ 2
p

σ 2
φ

⎞
⎠

3q
f sr

(56)

for r ≥ q.

Proof The proof follows directly from Theorem 2.

This very useful and insightful rule-of-thumb clearly shows
how the affine-constrained ADOP is made up from the con-
tributing factors for successful ambiguity resolution. The
contributing factors are:

• the undifferenced standard deviations: σφ, σp

• the geometric average of wavelengths: λ̄

• the number of frequencies: f
• the number of receivers/antennas: r + 1
• the number of tracked satellites: s + 1
• the dimension of the baseline span: q

The ADOP gets smaller for larger f, s or r . The signifi-
cant contribution of the affine-constraints is that one can
now ‘trade’ satellites for receiver/antennas. This is due to
the symmetry in s and r of (56). Such symmetry is absent
in the unconstrained case. As (56) shows, the contribution
of the code data precision is relative to that of the phase
data. This shows that one can improve the ADOP consider-
ably by improving the code data precision. In case of cur-
rent GPS, however, the code-phase variance ratio is large,
σ 2

p/σ 2
φ = 10+4, thus requiring the product f sr to be large

enough so as to dampen the detoriating effect of the relatively
poor code precision. With future GNSSs, however, the code
precision is expected to be better, thus permitting smaller
values for f sr .

Expression (56) also shows the effect of q, the dimension
of the baseline span. The smaller q is, the more constrained
the model is and thus the smaller the ADOP is. Full attitude
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Table 2 ADOPAC as function of number of satellites (s + 1) and num-
ber of receiver/antennas (r + 1), for a single-frequency ( f = 1) three-
dimensional baseline span (q = 3), with σφ/λ̄ = 0.01 and σφ/σp =
0.01

ADOPAC[cycle] r = 3 r = 4 r = 5 r = 6

s = 3 1.59 .49 .24 .15

s = 4 .49 .20 .12 .08

s = 5 .24 .12 .08 .06

s = 6 .15 .08 .06 .04

Table 3 ADOPAC as function of number of satellites (s+1) and number
of receiver/antennas (r +1), for a single-frequency ( f = 1) two-dimen-
sional baseline span (q = 2), with σφ/λ̄ = 0.01 and σφ/σp = 0.01

ADOPAC[cycle] r = 2 r = 3 r = 4 r = 5

s = 3 1.66 .34 .15 .10

s = 4 .51 .15 .09 .06

s = 5 .25 .10 .06 .04

s = 6 .15 .06 .05 .04

Table 4 ADOPAC as function of number of satellites (s+1) and number
of receiver/antennas (r +1), for a single-frequency ( f = 1) one-dimen-
sional baseline span (q = 1), with σφ/λ̄ = 0.01 and σφ/σp = 0.01

ADOPAC[cycle] r = 1 r = 2 r = 3 r = 4

s = 3 1.78 .18 .08 .05

s = 4 .55 .09 .05 .04

s = 5 .27 .06 .04 .03

s = 6 .17 .05 .03 .03

recovery is possible in case q = 2 or q = 3, while only
heading and elevation can be determined in case q = 1. To
illustrate the expected ambiguity resolution performance of
the affine-constrained GNSS attitude model, the values for
the single-frequency ADOPAC are given in Tables 2, 3, 4 for
different values of q. The single-frequency case is chosen as
this is considered to be the most challenging case for attitude
determination.

As Table 2 shows, one needs either a sufficient number of
satellites or a sufficient number of receiver/antennas to get a
small enough ADOP in case q = 3. In case of three baselines
(r = 3), one needs seven (s = 6) or more satellites to get a
small enough ADOP. However, by adding antennas one can
reduce the ADOP significantly. For instance, for r = s = 5,
one can expect successful ambiguity resolution, since then
ADOPAC = 0.08 cycle. Note that in the unconstrained case,
this is not possible, since the ADOP is then 3 times larger
(cf. Table 1).

The results of Table 3 apply to the case when all anten-
nas are situated in a plane (q = 2). These ADOP values
are smaller than their counterparts of Table 2. With three

baselines (r = 3) and six satellites (s = 5), we already
have ADOPAC = 0.1 cycle, from which follows that one can
expect to have successful ambiguity resolution.

The results of Table 4 apply to the case when all antennas
are aligned in a straight line (q = 1). These ADOP values
are again smaller than their counterparts of Tables 2 and 3,
respectively. The values in the Table show that already with
three antennas (r = 2) and five satellites (s = 4), successful
ambiguity resolution can be expected.

Although these instantaneous single-frequency ambiguity
resolution capabilities of the affine-constrained GNSS atti-
tude model are already impressive, they get even better when
more epochs are used. Due to the relatively slow changing
receiver-satellite geometry, the k-epoch affine-constrained
ADOP is to a good approximation equal to 1√

k
ADOPAC.

This expression can be used in combination with the results
given in the Tables to infer the multi-epoch ambiguity reso-
lution capabilities of the affine-constrained model.

5 Summary and conclusion

In this contribution, the affine-constrained GNSS attitude
model was introduced. This model avoids the computational
complexity of the orthonormality-constrained GNSS attitude
model, while it still has a better ambiguity resolution perfor-
mance than the multivariate unconstrained GNSS model. By
formulating the parametric orthonormality constraints of a
q-dimensional, (r+1)-antenna array in an equivalent implicit
form, the complete set of constraints could be decomposed
into 3(r − q) linear constraints and 1

2 q(q + 1) quadratic
constraints. The linear constraints are referred to as affine,
since a discarding of the quadratic constraints is equivalent
to assuming that the reference-frame and body-frame base-
line matrices are related by an affine transformation instead
of by a rotation.

It was shown that the ambiguity objective function of the
affine-constrained GNSS attitude model is given by

J (Z) = ||vec(Ẑ − Z)||2Q Ẑ Ẑ
+ ||vec(X̂(Z)PS)||2Q X̂(Z)X̂(Z)

(57)

while that of the more complex orthonormality-constrained
model is given by

H(Z) = J (Z) + ||vec(R̂c(Z) − Řc(Z))||2Q R̂c(Z)R̂c(Z)
(58)

with

Řc(Z) = arg min
R∈O3×q

||vec(R̂c(Z) − R)||2Q R̂c(Z)R̂c(Z)
(59)

The second term on the right-hand side of (57) is due to the
3(r−q) linear constraints, while the second term on the right-
hand side of (58) is due to the 1

2 q(q+1) quadratic constraints.
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The advantage of J (Z) over H(Z) is that J (Z) is quadratic
in Z while H(Z) is not. The search space of J (Z) is there-
fore ellipsoidal, from which follows that its integer minimizer
can be obtained efficiently by standard means. This is not the
case for H(Z). Its search space is non-ellipsoidal, as a con-
sequence of which a non-standard and more complex search
needs to be executed for computing the integer minimizer of
H(Z) (Giorgi et al. 2011).

Since the success-rate of the integer minimizer of J (Z)

can expected to be smaller than that of H(Z), it is important to
understand under which circumstances the affine-constrained
GNSS attitude model will still allow successful ambiguity
resolution. For this purpose a general closed form formula
for its ADOP was derived, giving for r ≥ q the simple and
insightful rule-of-thumb

ADOPAC = σφ

λ̄

√
(r + 1)

1
r (s + 1)

1
s

⎛
⎝

√√√√1 + σ 2
p

σ 2
φ

⎞
⎠

3q
f sr

(60)

This expression clearly shows how the affine-constrained
ADOP is made up from the contributing factors for success-
ful ambiguity resolution. These factors are the undifferenced
standard deviations of phase and code, σφ and σp, the geo-
metric average of wavelengths, λ̄, the number of frequencies,
f , the number of receivers/antennas, r + 1, the number of
tracked satellites, s + 1, and the dimension of the baseline
span, q. The ADOP gets smaller for larger f, s or r , and
smaller q. For r = q, the ADOP expression (60) reduces
to that of an unconstrained array or small multi-frequency
GNSS network. In that case the effect of the code-phase var-
iance ratio in (60) cannot be damped by selecting a larger r .
Hence, in the unconstrained case, the number of baselines has
only a marginal effect on the network’s ambiguity resolution
capabilities. This situation changes significantly, however,
for the case of the affine-constrained GNSS attitude model.
Since the affine-constrained ADOP is symmetric in s and
r , one can now ‘trade’ satellites for receiver/antennas and
improve the ambiguity resolution performance significantly
by equipping the array with more antennas.

Once ambiguity resolution has been successful, the ILS
solution Žc = arg minZ∈Z f s×r J (Z) can be used to determine
a precise platform attitude. Different options are available to
the user. The optimal one is to compute the attitude matrix as

Ř = arg min
R∈O3×q

||vec(R̂c(Žc) − R)||2Q R̂c(Z)R̂c(Z)
(61)

This solution has the orthonormality constraints enforced
and it uses all available information, since it is based on
R̂c(Žc) and its variance matrix Q R̂c(Z)R̂c(Z)

. An easier to
compute, but less precise, attitude solution is obtained, if
one uses the non-orthonormal estimate R̂c(Žc) directly for
the computation of heading, elevation and bank (cf. 3). This
approach is permitted if the precision of R̂c(Žc) is already

good enough for the application at hand. This will often be the
case, since the ambiguity resolved attitude solution is driven
by the very precise phase measurements. The consequence of
not having the orthonormality constraints enforced is, how-
ever, that inconsistency in the attitude solution may occur if
other entries of R̂c(Žc), then the ones used in (3), are used
for determining the attitude parameters. A complete descrip-
tion of the PDF of R̂c(Ž) can be obtained using the results
of (Teunissen 2001). In the Gaussian case, this PDF will be
a multi-modal distribution that converges to a multivariate
normal distribution for success-rates approaching one.
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Appendix

Proof of Lemma 1 (Orthonormal matrix parametrization)
(⇒) Since BS = 0 and BT = Iq , it follows from (18)
that X [S, T ] = [0, R]. With R ∈ O

3×q and thus RT R = Iq ,
the result (19) follows. (⇐) If we take as right-inverse of B
the r × q matrix T = BT(B BT)−1, then T is a basis matrix
of the range space of BT. Since S is a basis matrix of the
null space of B and therefore of the orthogonal complement
of the range space of BT, it follows that matrix [S, T ] is
square and invertible with STT = 0. The inverse is given
as [S, T ]−1 = [S(ST S)−1, T (T TT )−1]T. From (19) follows
that we may write X [S, T ] = [0, R] for some R ∈ O

3×q .
Hence, X = [0, R][S, T ]−1 = R(T TT )−1T T, which, after
substitution of T = BT(B BT)−1, gives (18) again. �

Proof of Lemma 2 (Multivariate Orthogonal Decomposition)
With the orthogonal projectors P[M,N ] = PM + PN̄ , PM =
M(MT Q−1 M)−1 MT Q−1, P⊥[M,N ] = I − P[M,N ] and PN̄ =
N̄ (N̄ T Q−1 N̄ )−1 N̄ T Q−1, where N̄ = [I2 f s − PM ]N , we
have

||vec(Y − M X − N Z)||2QY Y
= ||vec(P⊥[M,N ]Y )||2QY Y

+||vec(P[M,N ][Y − M X − N Z ])||2QY Y
= ||vec(Ê)||2QY Y

+||vec(P[M,N ][Y − M X − N Z ])||2QY Y
(62)

and

||vec(P[M,N ][Y − M X − N Z ])||2QY Y

= ||vec(PN̄ [Y − N Z ])||2QY Y

+||vec(PM [Y − M X − N Z ])||2QY Y
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= ||vec(N̄ [Ẑ − Z ])||2QY Y
+ ||vec(M[X̂(Z) − X ])||2QY Y

= ||vec(Ẑ − Z)||2Q Ẑ Ẑ
+ ||vec(M[X̂(Z) − X ])||2QY Y

(63)

from which the result (38) follows. �

Proof of Theorem 1 (The Constrained ADOP) Let â, b̂ be
the LS-solution of the linear model E(y) = Aa+Bb, D(y) =
Qyy, a ∈ R

n, b ∈ R
p. Then it follows from the determinant

factorization property, see e.g. (Koch 1999), that the deter-
minant of the variance-covariance matrix of â and ĉ = Cb̂
can be written as
∣∣∣∣
[

Qââ Qâĉ

Qĉâ Qĉĉ

]∣∣∣∣ = |Qââ ||Qĉĉ|a | = |Qââ|c||Qĉĉ| (64)

With ADOP = |Qââ | 1
2n , ADOPC = |Qââ|c| 1

2n and Qčč =
Qĉĉ|a , the result follows. �

Proof of Theorem 2 (The Affine Constrained ADOP) Part 1
First we prove the general expression (54). Since we have
Theorem 1, it suffices to derive an expression for ADOPUC.
For the determinant of the f sr × f sr ambiguity variance
matrix Q Ẑ Ẑ = 1

2 P ⊗ Qẑẑ (cf. 29), we have

|Q Ẑ Ẑ | = ( 1
2 ) f sr |DT

r Qr Dr | f s |Qẑẑ |r (65)

where use is made of P = DT
r Qr Dr (cf. 9). From an appli-

cation of the determinant factorization rule, see e.g. (Koch
1999), to the variance-covariance matrix of (ẑT, x̂T)T, we
obtain the identity |Qẑẑ ||Qx̂x̂ |z | = |Qẑẑ|x ||Qx̂x̂ | and thus

|Qẑẑ | = |Qẑẑ|x | |Qx̂x̂ |
|Qx̂x̂ |z | (66)

Since Qẑ(x)ẑ(x) = 2(N T Q−1 N )−1, it follows with N =
[ΛT ⊗ Is, 0]T and Q = blockdiag[Q f ⊗ DT

s Qφ Ds, Q f ⊗
DT

s Q p Ds], that Qẑ(x)ẑ(x) = 2[(ΛT Q−1
f Λ) ⊗ (DT

s Qφ

Ds)
−1]−1. Hence, its determinant is given as

|Qẑ(x)ẑ(x)| = 2 f s |ΛT Q−1
f Λ|−s |DT

s Qφ Ds | f (67)

From (65), (66), (67) and |ΛQ−1
f Λ| = |Λ|2|Q f |−1 =

λ̄2 f |Q f |−1, we obtain the unconstrained ADOP as

ADOPUC =
√

|Q Ẑ Ẑ |
1

f sr = vφ

λ̄

(√
|Qx̂x̂ |
|Qx̂x̂ |z|

) 1
f s

(68)

with v2
φ = |DT

r Qr Dr | 1
r |Q f |

1
f |DT

s Qφ Ds | 1
s and λ̄ =

(
∏ f

i=1 λi )
1
f . Substitution of (68) into (53) gives (54).

Part 2 Now we prove the simplified expression |Qx̂x̂ |/
|Qx̂(z)x̂(z)| = (1 + 1/ε2)3. From Qx̂x̂ = 2(M̄T Q−1 M̄)−1

(cf. 27) and Qx̂(z)x̂(z) = 2(MT Q−1 M)−1 (cf. 34), it follows
with M = [e2 f ⊗ G], G = DT

s H, Q = blockdiag[Q f ⊗

DT
s Qφ Ds, Q f ⊗ DT

s Q p Ds] and M̄ = P⊥
N M = [0, eT

f ⊗
HT Ds]T, that

|Qx̂x̂ |
|Qx̂(z)x̂(z)| = |I3 + [HTUφ H ][HTUp H ]−1| (69)

where Uφ = Ds(DT
s Qφ Ds)

−1 DT
s , Up = Ds(DT

s Q p

Ds)
−1 DT

s and H is the design matrix of the undifferenced
receiver-satellite geometry. Hence, if Qφ = ε2 Q p, then
Uφ = ε−2Up and the result follows.

Part 3 To prove the simplified expression for v2
φ , it is suf-

ficient to show that

|DT Q D| =
∑n

i=1 di∏n
i=1 di

(70)

for any (n−1)×n differencing matrix DT and any n×n diag-
onal matrix Q−1 = diag[d1, . . . , dn]. Define the n×n matrix
F = [D, e] in which e is the n-vector of ones. Thus DTe =
0. Then according to the determinant factorization rule, see
e.g. (Koch 1999), we have |FT QF | = |DT Q D||eT Qe −
eT Q D(DT Q D)−1 DT Qe|. This can be simplified to

|FT QF | = |DT Q D|(eTe)2/(eT Q−1e) (71)

with the use of the projector identity Q D(DT Q D)−1 DT =
In − e(eT Q−1e)−1eT Q−1. For Q = In , we have from (71)
that |FT F | = |DT D|(eTe). This combined with (71), shows
that

|Q| = |FT QF |
|FT F | = |DT Q D|

|DT D|
eTe

eT Q−1e
(72)

Since DT D = In−1+e′e′T, with e′ being the (n−1)-vector of
ones, it follows that |DT D| = |In−1 + e′e′T| = |1+ e′Te′| =
n. Hence, |DT D| = eTe = n. This combined with (72),
shows that

|DT Q D| = |Q|eT Q−1e = eT Q−1e

|Q−1| (73)

This result holds for any invertible Q. For a diagonal matrix
Q−1 = diag[d1, . . . , dn], the result (70) follows. �
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