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Integer carrier-phase ambiguity resolution is the key to fast 
and high-precision GNSS positioning and navigation. It is 
the process of resolving the unknown cycle ambiguities 
of the carrier-phase data as integers. Once this has been 

done successfully, the very precise carrier-phase data will act 
as pseudorange data, thus making very precise positioning and 
navigation possible.

Procedures for carrier-phase ambiguity resolution not only 
consist of integer ambiguity estimation, but usually also include 
ambiguity acceptance testing. Such testing is important, in 
particular in light of the ever increasing integrity demands on 
GNSS solutions. 

Although the statistical theory of integer ambiguity estima-
tion is reasonably well established, this cannot yet be said of 
ambiguity acceptance testing. The aim of this article, therefore, 
is to present a unifying theoretical framework for ambiguity 
estimation and testing. It provides the tools for comparing 
and evaluating current procedures for acceptance testing and 
creates the possibility to devise new tests that are better than 
existing ones.

We will begin with a review of the four-step procedure for 
integer ambiguity resolution, including acceptance testing. 
Next, we will introduce the principle of integer aperture (IA) 
estimation and explain how and why this estimation principle 
provides us the framework we are looking for. 

The following section will describe how we can evaluate 
the quality of IA estimation. Finally, we will discuss the way 
in which to define optimal IA estimators. Two such optimal 
IA estimators are presented, the fail-rate constrained maximum 
success-rate estimator and the minimum mean penalty estimator.

The Four Steps of Ambiguity Resolution
To describe the process for resolving carrier-phase ambigui-
ties, we start with the mixed integer linear(ized) GNSS model,  

where E(.) and D(.) denote expectation and dispersion, respec-
tively, and where the m-vector y contains the “observed minus 
computed,” single-, dual- or multi-frequency carrier-phase and 
pseudorange (code) observables. The n-vector a contains the 
integer double-differenced (DD) ambiguities, and the real-val-
ued p-vector b contains the remaining unknown parameters, 
such as baseline components (coordinates), atmospheric delay 
parameters (troposphere, ionosphere), and possibly (receiver, 
satellite) clock parameters and instrumental delays. Note that 
the parameterization in DD ambiguities does not require y to 
be in DD form. 
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Thus, y may be in undifferenced or single-differenced form 
as well. The m × (n+p) matrix (A,B) contains the given design 
matrices of a and b, respectively, and the m×m positive definite 
matrix Qyy is the variance matrix of y.

The process of solving the GNSS model is usually divided 
into the following four steps (Figure 1).

1. Float Solution. In the first step, the integer nature of the 
ambiguities is discarded and a standard least-squares (LS) 
parameter estimation is performed. As a result, one obtains the 
so-called float solution, together with its variance-covariance 
matrix,  

Other forms than batch least-squares — such as, for exam-
ple, recursive LS or Kalman filtering — may, of course, also be 
used to come up with a float solution. Such choices will depend 
on the application and on the structure of the GNSS model.

2. Integer solution: In the second step, the real-valued float 
ambiguity solution  is further mapped to an integer solution 

Many such integer mappings exist. Popular choices are inte-
ger least-squares (ILS), integer bootstrapping (IB) and integer 
rounding (IR). ILS is optimal, as it can be shown to have the 
largest success rate of all integer estimators. (For further dis-
cussion of this point, see the 1999 article on the subject by P. J. 
G. Teunissen listed in the Additional Resources section near 
the end of this article.) IR and IB, however, can also perform 
quite well, in particular after the LAMBDA decorrelation has 
been applied. Their advantage over ILS is that no integer search 
is required.

3. Accept/Reject. Once integer estimates of the ambigui-
ties have been computed, the third step consists of deciding 
whether or not to accept the integer solution. Several such tests 
have been proposed in the literature and are currently in use 
in practice. Examples include the ratio-test, the F-ratio test, 
the difference-test and the projector-test (See the 2005 article 
by S. Verhagen referenced in Additional Resources for a fuller 
discussion of these tests.) 

The ratio-test is probably one of the most popular. If we 
define the (weighted) squared distance between the float solu-
tion  and an integer vector  as  
the ratio-test is given as  

with  being the integer vector that returns the second smallest 
value of D(z). The positive scalar c < 1 is the tolerance value that 
needs to be selected by the user.

Thus, the decision to accept the ILS solution will be made 
when  is sufficiently smaller than . Otherwise, the ILS 
solution is rejected in favour of the float solution.

4. Fixed Solution. Once the integer solution  has been 
accepted, the float estimator  is further adjusted to obtain the 
so-called fixed estimator  

This solution has a quality that is commensurate with the 
high precision of the phase data, provided that a correct deci-
sion was made in the preceding step. In this article, we focus 
attention on the third step: acceptance or rejection of the inte-
ger solution. 

Although the statistical theory of integer ambiguity estima-
tion (second step) is reasonably well established, for a long time 
no such theory was available for the third step. Consequently, a 
proper treatment of the accept/reject decision lags behind the 
level at which the second step is treated in practice. This has 
resulted in ad hoc approaches to the third step, in an absence 
of a proper quality description, and sometimes even in a mis-
understanding of its essence.

The goal of our discussion here, therefore, is to present a 
unifying framework for ambiguity resolution — one that has 
Step 3 integrally included. The framework is based on the prin-
ciple of integer aperture estimation as introduced by P. J. G. FIGURE 1  The four steps of GNSS carrier-phase ambiguity resolution
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Teunissen in his 2003 Journal of Planetary Geodesy article cited 
in Additional Resources. 

This framework allows one to answer such questions as: 
(i) What is the exact role played by Step 3? 
(ii) How can we describe and evaluate its performance? 
(iii) How do the different current procedures compare? 
(iv) Do tests exist that are better than the current ones?

Integer Aperture Estimation
IA estimation unifies the two steps of integer estimation (Step 
2) and testing (Step 3). This approach takes the float solution 
 as input and maps it to either an integer solution or to itself. 

An IA-estimator of the unknown ambiguity vector  is 
therefore defined as  

with the subsets  satisfying  

where Int stands for interior. 
Hence, Ω is the integer acceptance region (fix region), while 

its complement is the integer reject region (float region). All 
IA-estimators have in common that their integer acceptance 
regions Ω are z-translational invariant, . 
Figure 2 shows a two-dimensional example of such a z-transla-
tional invariant acceptance region. 

The IA-estimator is completely determined once Ω0 is given. 
By changing the size and shape of Ω0 one changes the outcome 
of the IA-estimator. The subset Ω0 can therefore be seen as an 
aperture pull-in region with two limiting cases: one in which Ω0 
is empty and the other when Ω0 is such that Ω = Rn. 

In the first case the IA-estimator becomes identical to 
the float solution , and in the second case the IA-estimator 
becomes identical to an integer estimator. In the latter case the 
integer aperture pull-in regions become equal to the pull-in 
regions of the applied integer estimator, e.g., the ILS pull-in 
regions (hexagons) shown in black in Figure 2. This shows that 
IA-estimation generalizes the principle of integer estimation, 
i.e., integer estimators are IA-estimators, but the converse is 
not necessarily true.

Importantly, the principle of IA-estimation also generalizes 
all current ambiguity acceptance tests. That is, each such test 
procedure, such as the ratio-test, the F-ratio test, the difference-
test, or the projector-test, is a member of the class of IA-estima-
tors. For the ratio-test, for instance, the translational invariance 
of its acceptance and rejection regions follows directly from the 
translational invariance of R( ). 

This indicates that the ratio-test assesses the closeness of the 
float solution to its nearest integer vector. If it is close enough, 
the test leads to acceptance of the ILS solution; otherwise it 
leads to rejection in favor of the float solution. The size or aper-

ture of the ratio-test’s pull-in region provides the largest dis-
tance one is willing to accept. The tolerance value c can be used 
to tune this aperture.

Note that testing the closeness of the float solution to its 
nearest integer is not the same as testing the correctness of the 
ILS solution. Thus the ratio-test does not test for the correctness 
of the ILS solution, as is sometimes erroneously stated in the 
literature. The outcome of the ILS solution is correct if it would 
equal the unknown integer mean of , a = E( ). But the close-
ness of  to the integer vector a is not tested by the ratio-test.

From the definition of the ratio-test, its aperture pull-in 
region Ω0 can be constructed geometrically. We have  

where . This shows that the ratio-test’s aper-
ture pull-in region is equal to the intersection of all ellipsoids 
with centers 

 and “radius” 
 

See Figure 3. 
Similar geometric constructions can be made of the aper-

ture pull-in regions of the other currently used ambiguity 
acceptance tests, such as the F-ratio test, the difference-test, 
or the projector-test. 

WORKING PAPERS

FIGURE 2  The z-translational invariant integer acceptance or fix region Ω 
(green area) of a two-dimensional IA-estimator
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Quality of IA-Estimation
To evaluate the performance of an IA-estimator, the following 
three outcomes need to be distinguished:  

The corresponding probabilities of success (S), failure (F), 
and undecided (U) are then given as 

where  and  are the probability density functions 
(PDFs) of the ambiguity residuals  =  - a and  =  - , respec-
tively. The residual vector  is the “true” ambiguity residual, 
while  is the estimated ambiguity residual. 

Their PDFs are related as  

where p0(x) is the indicator function of the ILS pull-in region 
of the origin. In case the float solution is normally distributed 
as â~ N(a,Qââ), the PDF of  is given as 

Hence, the PDF of  is then a sum of integer-shifted normal 
PDFs. 

For the one-dimensional case this PDF is shown in Figure 4 
for different values of . A small ambiguity standard deviation 

 tends to a Dirac impulse function, while a large  tends to 
a uniform distribution. Figure 4 shows examples of this point. 

The above foregoing probabilities may now be used to evalu-
ate any IA-estimator, including those that are currently in use. 
Additionally, these probabilities may be used to develop new 
strategies for current IA-estimators. 

Note that the complement of the undecided probability, 1 – 
PU = PS + PF, is the fix-probability, i.e., the probability that the 
outcome of the IA-estimator is integer. The probability of suc-
cessful fixing, the successfix-rate, is therefore given by the ratio  

To have confidence in the integer outcomes of IA-esti-
mation, a user would like to have PSF close to 1. This can be 
achieved by setting the fail-rate PF at a small enough level. 

Thus, the user chooses the small level of fail-rate that he 
finds acceptable and then determines the size of the aperture 
pull-in region Ω0 that corresponds with this fail-rate level. With 
such a setting, the user has the guarantee that the fail-rate of his 
IA-estimator will never become unacceptably large.

This fixed fail-rate strategy gives users control over the fail-
rate of their ambiguity resolution. And when applied to current 
IA-estimators, it provides an improvement over the way the 
tolerance values are selected. 

In the case of the ratio-test, for instance, often a fixed value 
for the tolerance value c is used (e.g., 1/2 or 1/3). But then the 
user has no control over the fail-rate, because it will vary with 
varying strength of the underlying GNSS model. Instead of 
using the customary fixed c-value approach, the fixed fail-rate 
approach serves better. From the fixed fail-rate, one can then 
compute the variable tolerance value (which varies with the 
varying strength of the underlying GNSS model).

FIGURE 3  Construction of the integer aperture pull-in regions of the ratio-test (left) and difference-test (right)
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Optimal IA-Estimation
To this point, we have considered IA-
estimation with aperture pull-in shapes 
chosen a priori, such as the ones that fol-
low from current ambiguity tests. How-
ever, because the class of IA-estimators 
is much larger, one can also design one’s 
own IA-estimator using Equation (6), 
simply by choosing an Ω0 that satisfies 
the equations in (7). In fact, one can even 
go one step further and try to find an 
optimal IA-estimator that is best in its 
class. 

To determine which of the IA-esti-
mators performs best, we first need to 
formulate an optimality criterium. Two 
such optimal estimators were introduced 
by P. Teunissen in his 2004 and 2005 
articles cited in Additional Resources. 
They are the constrained maximum suc-
cess-rate (CMS) estimator and the mini-
mum mean penalty (MMP) estimator.

Constrained Maximum 
Success-Rate (CMS) 
Estimator
The CMS-estimator is defined as the one 
that maximizes the success-rate subject 
to a given fail-rate. It has by definition 
the largest probability of correct integer 
estimation of all IA-estimators with the 
same fail-rate. 

The aperture pull-in region of the 
CMS-estimator, , follows from solving 
the constrained optimization problem  

The solution is given as  

with the aperture parameter 0 < λ < 1 
chosen so as to satisfy the a priori fixed 
fail-rate PF and where P0 denotes the ILS 
pull-in region, 

This result shows that the boundar-
ies of the optimal aperture pull-in region  

 are formed by the contour surfaces 
of the PDF ratio  inside the 
ILS pull-in region P0. This region con-
tracts when a smaller PF is chosen (or λ 
increases). See Figure 5 and Figure 6 for 
one-dimensional and two-dimensional 
examples, respectively. 

Figure 5 shows the PDF ratio 
 in 1D for varying . As 

the ambiguity precision improves, the 
aperture pull-in interval gets larger and 
ultimately will coincide with the interval 
[-0.5, +0.5]. 

Figure 6 shows several cases of 2D 
aperture pull-in regions. Those in the 

left plot of Figure 6 are based on a weak 
GNSS model (poor ambiguity precision), 
while those in the right plot of of the fig-
ure are based on a strong GNSS model 
(good ambiguity precision). 

In case of the weaker model, the 
aperture pull-in regions are more ellipse-
shaped, while in case of the stronger 
model the regions follow more closely 
the shape of the ILS pull-in region. And 
indeed, the stronger the model gets, the 
more closely  approaches P0. 

Ultimately the CMS-estimator 
reduces to the ILS-estimator,  = P0, 
which happens when the inequality in 
Equation (14) is trivially fulfilled.

Minimum Mean Penalty 
(MMP) Estimator
The MMP-estimator is based on the 
idea of penalizing certain outcomes of 
IA-estimation. The penalties, e.g., costs, 
are chosen by the user and can be made 
dependent on the application at hand. 
Different penalties are assigned to dif-
ferent outcomes: a success penalty pS if 

 Ωa, a failure penalty pF if  Ω\Ωa, 
and an undecided penalty pU if  Ω (pS 
≤ pU ≤ pF). 

With this assignment, we have con-
structed a discrete random variable, 
the penalty p, having the three possible 
outcomes, p = {pS, pF, pU}. We may now 
consider the average of the discrete ran-
dom variable p, the average penalty E(p), 
which is a weighted sum of the individu-
al penalties, with the weights being equal 
to the three probabilities PS, PF, and PU:  

The MMP-estimator is defined as the 
IA-estimator having the smallest mean 
penalty. It follows from solving the min-
imization problem  

The solution is again given by Equa-
tion (14), but now with the aperture 
parameter given as  

Note that increasing the failure pen-
alty, pF, increases λ and contracts . 
This is as it should be, since a contract-

WORKING PAPERS

FIGURE 4  The PDF of the estimated ambiguity residual , for varying ambiguity standard deviation 
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ing  reduces the occurences of wrong 
fixes.

The Computational  
Steps
It is gratifying to see that the above two 
optimization principles provide the 
same structure for the optimal IA-esti-
mator. It implies, somewhat in analogy 
with the pairing of least-squares estima-
tion and best linear unbiased estimation, 
that the same procedure can be given 
two different interpretations of opti-
mality.

The steps for computing the CMS- 
and MMP-estimator are: 
•	 Compute	the	ILS-estimator	

•	 Construct	the	ambiguity	residual	
 and compute the PDF-ratio 

 This outcome provides a measure 
of confidence in the solution . The 
larger the ratio, the more confidence 
one has. Note that the ratio can be 
seen as an approximation to the suc-
cessfix-rate, Equation (12). Further-
more, in a Bayesian context, R( ) is 
also the marginal posterior probabil-
ity of  being the true integer vector. 

•	 Determine	the	aperture	parameter	λ, 
either from the user-defined fail-rate 
in case of CMS, or from Equation 
(17) in case of MMP. Output  if

otherwise the outcome is . 
Both  and R( ) can be computed 

efficiently	with	the	LAMBDA	method.

Summary
IA estimation provides the framework 
for GNSS ambiguity resolution. It uni-
fies integer estimation and acceptance 
testing in a class of ambiguity estima-
tors for which different choices are pos-
sible. Based on the 
theory presented 
in this column, we 
can now answer the 
questions posed ear-
lier.

1. What is the 
exact role played by 
the acceptance test 
(Step 3) of ambigu-
ity resolution?

Without such 
test ing t he user 
wou ld not  have 
much control over 
the fail-rate. The 
fail-rate would then 
be dictated by the 

choice	of	integer	estimator	(e.g.,	ILS,	IB	
or IR) and the strength of the underly-
ing model. In the presence of such test-
ing, however, the user gains control over 
which solutions to accept and which to 
reject. Hence, by exercizing control over 
the size of the aperture pull-in regions, 
the user is given control over the fail-rate 
of the ambiguity resolution procedure.

2. How can we describe and evalu-
ate the performance of integer aperture 
estimation?

With IA estimation we can evaluate 
the success-, fail-, and undecided-rate, as 
well as the successfix-rate. This allows us 
then to determine an appropriate size of 

FIGURE 5  The PDF ratio  in 1D for varying 
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the aperture pull-in region, for example, 
by choosing a fixed fail-rate. 

When a fixed fail-rate is set, the 
ambiguity resolution procedure auto-
matically adapts the size of the aperture 
pull-in region to the strength of the 
underlying GNSS model. (We provide 
an example in the following section.) 
When the model gets stronger as time 
progresses, the size gets larger. With a 
sudden drop in tracked satellites, how-
ever, the size gets reduced again. 

3. How do the different current pro-
cedures for acceptance testing compare?

The principle of IA-estimation pro-
vides a whole class of estimators. It can 
be shown that all current procedures of 
integer estimation and acceptance test-
ing, such as the ratio-test, the F-ratio 
test, the difference-test, and the projec-
tor-test, are members of the IA-class. 
Their performance, however, will be dif-
ferent: the shapes of their aperture pull-
in regions are different and consequently 
the success-rates are different too, even if 
the fixed fail-rate approach to select the 
tolerance value is applied.

4. Do tests exist that are better than 
the current ones?

More — and better — IA-estimators 
can be defined than the ones currently 

used. In this column, we presented two 
optimal integer aperture estimators: the 
constrained maximum success-rate esti-
mator and the minimum mean penalty 
estimator. They are based on different 
optimality criteria but turn out to have 
the same structure. The difference lies in 
the construction of the aperture param-
eter.

IA Estimation Example
Figure 7 shows a two-dimensional exam-
ple of IA estimation; for a given 2x2 vari-
ance matrix 10,000 float ambiguity vec-
tors are simulated. Each dot in the figure 
represents a float ambiguity vector. The 
color depicts whether the correspond-
ing integer solution would be accepted 
and correct (green), accepted and wrong 
(red), or rejected (blue) with IA-estima-
tion for a certain aperture value.

In this case, the empirical fail-
rate can be determined by counting 
the number of red dots divided by the 
total number of samples (10,000). The 
choice of a smaller aperture value will 
clearly result in smaller aperture pull-in 
regions and consequently the fail-rate 
will become smaller. Similarly, we can 
determine the empirical success-rate (by 
counting the green dots), which will also 

decrease with small-
er aperture values.

For the specific 
example in Figure 
7, the choice of the 
aperture value is 
clearly too large 
for the given weak 
model, resulting in 
a large fail-rate.

Figure 8 i l lus-
trates how the fixed 
fa i l-rate concept 
works out. Simulat-
ed float ambiguities 
are now shown for 
two different model 
strengths. For the 
weaker model (left) 
the spread in the 
f loat solutions is 
larger and conse-
quently the aper-
ture pull-in region 

should be chosen small to obtain a fail-
rate of 0.1 percent in this case. For the 
stronger model (right), the same fail-rate 
is obtained with a much larger pull-in 
region. Hence, in this case the success- 
and fix-rates are also larger.

Note that the shape of the aperture 
pull-in regions depends on the IA-esti-
mator and the shape of the optimal IA-
estimator (CMS) is such that for a given 
fail-rate the corresponding success-rate 
is maximum.
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FIGURE 8  Illustration of IA estimation with fixed fail-rate for two models: simulated float ambiguities are shown as dots where the color depicts whether 
the corresponding integer solution would be  accepted and correct (green), accepted and wrong (red), or rejected (blue).
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