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ABSTRACT Integer carrier phase ambiguity resolution is the key to fast and high-
precision satellite positioning and navigation. It applies to a great variety of current
and future models of GPS, modernized GPS and Galileo. It also applies to stacked
radar interferometry for deformation monitoring, see e.g. [Hanssen, et al, 2001]. In this
contribution we apply the integer least-squares’ principle to the rank defect model of
stacked InSAR carrier phase data. We discuss two ways of dealing with the rank defect
for ambiguity resolution. One is based on the use of a priori data, the other is based on
the use of an interval constraint on the deformation rate.

1 INTEGER LEAST-SQUARES (ILS)

Consider the system of observation equations

y = Ax + Bz + e (1)

where y ∈ Rm is the vector of observations, x ∈ Rp and z ∈ Zn are the vectors of
unknown parameters and e ∈ Rm is the noise vector. Matrix (A, B) is given and assumed
to be of full column rank. The structure of the system (1) is typical for carrier phase GPS
applications. In that case y consists of the carrier phase and pseudo range data, z consists
of the integer double difference ambiguities and x consists of the baseline components and
possibly other real-valued parameters (e.g. atmospheric delay parameters). The model
is however also applicable to radar interferometric phase ambiguity resolution problems,
see e.g. [Bamler and Hartl, 1998], [Hanssen, 2001], [Hanssen et al, 2001], [Kampes and
Hanssen, 2004], [Kampes, 2005].

In order to solve (1) in a least-squares sense, we follow the approach of [Teunissen,
1993]. Let Qy be the variance matrix of y and let ||.||2

Q−1
y

= (.)T Q−1
y (.). We first decompose

||e||2
Q−1

y
into a sum of three quadratic terms:

||e||2
Q−1

y
= ||y − Ax−Bz||2

Q−1
y

= ||ê||2
Q−1

y
+ ||ẑ − z||2

Q−1
ẑ

+ ||x̂(z)− x||2
Q−1

x̂|z
(2)
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in which ê = y−Ax̂−Bẑ, x̂ and ẑ are the least-squares solutions for x and z, respectively,
assuming that z is real-valued instead of integer-valued, and

x̂(z) = (AT Q−1
y A)−1AT Q−1

y (y −Bz) (3)

is the least-squares solution of x based on the assumption that z is known. In GPS
terminology, the solutions x̂ and ẑ are also referred to as the ’float’ solutions. Solution
x̂(z) is a conditional least-squares solution. Matrices Qẑ and Qx̂|z are the variance matrices
of ẑ and x̂(z), respectively. Note that the ’float’ solutions x̂ and ẑ would not be unique
in case matrix (A, B) is rank defect.

From (2) follows that

min
x∈Rp,z∈Zn

||y −Ax + Bz||2
Q−1

y
= ||ê||2

Q−1
y

+ min
z∈Zn

{
||ẑ − z||2

Q−1
ẑ

+ min
x∈Rp

||x̂(z)− x||2
Q−1

x̂|z

}
(4)

This shows that the least-squares solutions for x ∈ Rp and z ∈ Zn are given as

ž = arg min
z∈Zn

||ẑ − z||2
Q−1

ẑ
and x̌ = x̂(ž) (5)

In [Teunissen, 1995] it is shown how ž can be computed in an efficient manner by means
of the LAMBDA method. In [Teunissen, 1999] it is shown that the integer least-squares
estimator ž is optimal in the sense that it maximizes the probability of correct integer
estimation. For a brief review of statistical carrier phase ambiguity resolution, see e.g.
[Teunissen, 2001].

The probability of correct integer estimation (the so-called success-rate) is driven by
the variance matrix of ẑ. The ADOP (Ambiguity Dilution of Precision), defined as

ADOP = |Qẑ| 1
2n (cycle) (6)

is a simple scalar measure for the precision of ẑ. It is the geometric mean of the conditional
standard deviations of ẑ. It has the advantage of being invariant for the class of admissible
integer transformations. The ADOP can be used to get a first quick impression on the
model’s ability to achieve successful ambiguity resolution. Fo this to be the case, the
ADOP needs to be small enough (e.g. well below the cycle level).

2 InSAR ILS WITH DEFORMATION DATA

One of the simplest models of phase ambiguity resolution for stacked radar interferometry
takes the form (see e.g. [Hanssen et al., 2001]),

yi = aix + zi + ei, i = 1, . . . , n (7)

with yi the observed phase difference between two permanent scatterers (expressed in
cycles), x the unknown deformation rate, zi the unknown integer ambiguity, ei the noise
term, and ai = 2

λ
Δti, where λ denotes the wavelength (e.g. 5.8cm) and Δti is a time

interval (expressed in years) between the current time and a reference time. The model
can be written in vector form as

y = ax + z + e (8)
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This model appears to be a special case of (1), since A �→ a, B �→ I, p = 1 and m = n.
Note however that the condition of having a coefficient matrix of full column rank is not
met anymore, since matrix (a, In) has a rank defect of one. Hence, the system contains
insufficient information to compute a unique ’float’ solution for x and z. This situation
can be remedied by including data xo on the deformation rate x. This could be actual
data (from earlier studies) or pseudo-data. As a result we obtain the full rank model[

y
xo

]
=

[
a
1

]
x +

[
I
0

]
z +

[
e
ex

]
with variance matrix

[
Qy 0
0 σ2

x

]
(9)

in which σ2
x is used to express the a priori uncertainty of the deformation rate. Now that

the model is of full rank, the method of the previous section can be applied again. This
is the approach which has been followed in [Hanssen et al, 2001].

To determine the ADOP, we need the variance matrix of ẑ. It is given as Qẑ =
Qy + σ2

xaaT , from which the ADOP follows as

ADOP = |Qẑ| 1
2n = |Qy| 1

2n (1 + σ2
xa

T Q−1
y a)

1
2n (10)

With Qy = σ2
φIn, ai = 2

λ
Δti and small σφ, we get

ADOP ≈ σφ

(
2

λ

σx

σφ

√∑
Δt2i

) 1
n

(cycle) (11)

This simple result can be used to get a quick impression of whether the model has enough
strength for successful ambiguity resolution.

3 InSAR ILS WITH DEFORMATION CONSTRAINT

Instead of working with a priori data on the deformation rate x, one may also consider
using a constraint in the form of an interval α ≤ x ≤ β, with α and β given. In practice
one usually has a fair idea over which range one can expect the deformation to occur. In
that case it is not difficult to choose α and β. Hence, the ILS-problem now becomes

min
x∈R,z∈Zn

||y − ax− z||2
Q−1

y
subject to α ≤ x ≤ β (12)

Note that we could have added the constraint also to the model based on the a priori
deformation data. In the following, however, we will work with the model (12). The
procedure for solving it can also be used for the model based on the a priori deformation
data.

Unconstrained minimization Let us first consider minimizing the least-squares’ ob-
jective function without the constraint. With the use of the orthogonal projectors Pa =
a(aT Q−1

y a)−1aT Q−1
y and P⊥

a = In − Pa, we have

minx∈R,z∈Zn ||y − ax− z||2
Q−1

y
= minx∈R,z∈Zn

{
||P⊥

a (y − z)||2
Q−1

y
+ ||Pa(y − z)− ax||2

Q−1
y

}

= minz∈Zn

{
||P⊥

a (y − z)||2
Q−1

y
+ minx∈R ||Pa(y − z)− ax||2

Q−1
y

}

= minz∈Zn

{
||P⊥

a (y − z)||2
Q−1

y
+ minx∈R ||x̂(z)− x||2

aT Q−1
y a

}
(13)
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with x̂(z) = (aT Q−1
y a)−1aT Q−1

y (y − z). This shows that the solution is given as

ž = arg min
z∈Zn

||P⊥
a (y − z)||2

Q−1
y

and x̌ = x̂(ž) (14)

This result seems to imply that in order to find ž, we need to search over the complete
space of integers Zn. Clearly, this is not practically feasible. Fortunately, we can confine
the search to a subset of Zn.

The relevant integer vectors Let S : Rn �→ Zn be the integer map of componentwise
integer rounding. Then all y ∈ Rn which are mapped by S to z ∈ Zn form the set

Sz = {y ∈ Rn|S(y) = z} (15)

This set is the n-dimensional ’unit-cube’ centred at z. Note, since Qy is assumed to be a
diagonal matrix, that S has the property minz∈Zn ||y − z||2

Q−1
y

= ||y − S(y)||2
Q−1

y
. We may

therefore decompose the least-squares’ objective function also as

min
x∈R,z∈Zn

||y − ax− z||2
Q−1

y
= min

x∈R

{
min
z∈Zn

||y − ax− z||2
Q−1

y

}
= min

x∈R
||y − ax− S(y − ax)||2

Q−1
y

(16)
This shows that the relevant integer vectors are those which are the centres of the ’unit-
cubes’ through which the line y − ax passes. They form the set

Ωz = {z ∈ Zn|S(y − ax) = z, x ∈ R} (17)

Thus instead of (14) we may now write

ž = arg min
z∈Ωz

||P⊥
a (y − z)||2

Q−1
y

and x̌ = x̂(ž) (18)

However, since the range of x has not yet been bounded, the set Ωz still contains an
infinite number of integer vectors.

The finite set Ω′z We will now make use of the constraint α ≤ x ≤ β. This allows us to
reduce the infinite set Ωz to the finite set

Ω′z = {z ∈ Zn|S(y − ax) = z, α ≤ x ≤ β} (19)

Hence, we are now only considering a line segment of length
√

aT a(β − α) of the line
y − ax. Note that the length of the line segment is an approximate upper bound for the
number of integer vectors contained in Ω′z.

Finding the integer vectors z ∈ Ω′z To find all integer vectors that satisfy S(y−ax) = z
for α ≤ x ≤ β, we first make the problem a bit more tractable. Let x′ = x − α,
z′′ = S(y− aα), z′ = z− z′′, and y′ = y− aα− z′′. Then z = S(y− ax) = S(y′− ax′)+ z′′

and thus
z′ = S(y′ − ax′) with 0 ≤ x′ ≤ γ = (β − α) and y′ ∈ S0 (20)

Hence, x′ is nonnegative and all components of y′ lie within the interval [−1
2
, +1

2
]. Note

that z′ = S(y′−ax′) is equivalent to the n intervals z′i− 1
2
≤ y′i−aix

′ ≤ z′i+
1
2
, i = 1, . . . , n.
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To find the elements of Ω′z, one can now proceed as follows. Consider for each i the
graph of the line εi(x) = y′i − aix

′ as function of x′. The line starts at the point (0, y′i),
where for each i, y′i ∈ [−1

2
, +1

2
]. The line may be located in either the first or the fourth

quadrant, depending on whether ai ≤ 0 or ai ≥ 0. Starting with x′ = 0, the first candidate
integer vector is z′ = 0. The next candidate integer vector follows from which of the n
lines εi(x) first crosses one of the levels ±1

2
modulus 1. For instance, if it is the line

εj(x) which first crosses the level ±1
2
, then the second candidate integer vector is given

as z′ = (. . . , 0, 1, 0, . . .)T , with the 1 in slot j. In this way one can proceed collecting all
candidate integer vectors z′ for the range 0 ≤ x′ ≤ γ. From them the elements of Ω′z are
obtained as z = z′ + S(y − aα).

Computing the final solution Now that the finite set Ω′z is given, we compute

ž = arg min
z∈Ω′z

||P⊥
a (y − z)||2

Q−1
y

and x̌ = x̂(ž) (21)

On this result one last check has to be performed, namely whether the constraint α ≤
x̌ = x̂(ž) ≤ β is satisfied or not. If it is, then (21) is the solution sought. If it is not, then
the solution is given by one of the two endpoints of the line segment, x = α or x = β.
The solution is x = α if ||y − aα − S(y − aα)||2

Q−1
y

< ||y − aβ − S(y − aβ)||2
Q−1

y
. Note

that in practice one may question the choice of the constraint if one of the two endpoints
turns out to be the solution. The purpose of the constraint in our present application is
namely to be able to construct a finite integer search space Ω′z, but it is not chosen so
as to influence the final solution. Thus if one of the two endpoints turns out to be the
solution, it is likely that the constraint has been chosen too strict.

4 A POSTERIORI PROBABILITY OF THE INTEGER SOLUTION

Once the integer vector ž has been computed, one would like to know whether one can
have any trust in the solution. Intuitively, this boils down to a comparison of the values
taken by ||P⊥

a (y − z)||2
Q−1

y
for z ∈ Ω′z . One would then have more trust in the solution if

||P⊥
a (y−ž)||2

Q−1
y

is significantly the smallest value, than when ||P⊥
a (y−ž)||2

Q−1
y

is comparable

to one or more of the other values. As shown below this is what is measured by the
conditional distribution of z.

The following assumptions are made: y|x, z ∼ N(ax + z, Qy), with conditional proba-
bility density function (pdf) f(y|x, z). Thus f(y|x, z) ∝ exp{−1

2
||y−ax−z||2

Q−1
y
} (where ∝

stands for proportional to). x is uniformly distributed over the interval [α, β]. Its pdf g(x)
is therefore proportional to the indicator function δα,β(x) of the interval, g(x) ∝ δα,β(x).
For the distribution of z, we assume a noninformative prior. x and z are assumed to be
independent and the distribution of z is denoted as h(z). We therefore have for the joint
distribution f(x, y, z) = f(y|x, z)g(x)h(z), from which the a posteriori distribution of z
follows as

h(z|y) =

∫
f(y|x, z)g(x)dx∑

z∈Zn

∫
f(y|x, z)g(x)dx

=
exp{−1

2
||P⊥

a (y − z)||2
Q−1

y
}k(z)∑

z∈Zn exp{−1
2
||P⊥

a (y − z)||2
Q−1

y
}k(z)

(22)
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where

k(z) =
1

σ
√

2π

∫ β

α
exp{−1

2

(
x− x̂(z)

σ

)2

}dx with σ2 =
1

aT Q−1
y a

(23)

For sufficiently small σ, k(z) will be close to one for x̂(z) ∈ [α, β] and close to zero outside
this range. Under this assumption (22) may be approximated as

h(z|y) ≈
exp{−1

2
||P⊥

a (y − z)||2
Q−1

y
}∑

z∈Ω′z exp{−1
2
||P⊥

a (y − z)||2
Q−1

y
} (24)

Note that ž is the maximizer of the right hand side. The a posteriori probability of the
integer solution (i.e. the probability conditioned on the data) is given as h(ž|y). The
closer this value is to one, the more trust one will have in the computed solution.
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