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Abstract
Integer carrier phase ambiguity resolution is often a prerequisite for high precision GPS
positioning. It applies to a great variety of GPS models, including those which are used in
hydrographic applications and marine positioning. Since the quality of kinematic GPS
positioning depends critically on whether the correct integer ambiguities are used or not, it is of
importance to have easy-to-compute diagnostics available that measure the expected success rate
of ambiguity resolution. In this contribution we will introduce and analyse such an ambiguity
dilution of precision (ADOP) measure. In contrast to the traditional way in which DOP-measures
are introduced, our ADOP is defined such that it is invariant for the class of admissible
ambiguity transformations. It does not depend on the arbitrary choice of reference satellite when
constructing the double differenced ambiguities. Since the GPS ambiguities are known to be
highly correlated, the ADOP is constructed such that it not only captures the precision but also
the correlation characteristics of the ambiguities. We will present the ADOPs for a variety of
GPS models and show their behaviour by graphical means. These models include single-
baselines as well as kinematic networks such as those used for attitude determination and
seismic streamer positioning. It is also shown how the ADOP can be used to bound the success
rate of ambiguity resolution.

1.  Introduction
GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of the
double-difference carrier phase data as integers. It is the key to high precision GPS relative
positioning. Once the integer ambiguities are resolved, the carrier phase measurements will start
to act if they were very precise pseudorange (code) measurements. As a consequence the
remaining parameters in the model, such as the baseline components, can be estimated with a
comparable high  precision.
Ambiguity resolution applies to a great variety of GPS models currently in use. These models
may range from single-baseline models used for kinematic positioning to multi-baseline models
used for studying geodynamic phenomena. An overview of these and other GPS models,
together with their applications in surveying, navigation and geodesy, can be found in textbooks
such as (Hofmann-Wellenhof et al., 1997), (Kleusberg and Teunissen, 1996), (Leick, 1995),
(Parkinson and Spilker, 1996) and (Strang and Borre, 1997). Also in hydrography and marine
geodesy, the use of high precision GPS positioning, based on ambiguity resolution, has gained
momentum. This not only holds true for the more traditional surveying tasks, but also for
applications such as attitude determination and the positioning of seismic streamer networks, see
e.g. (Lachapelle et al., 1994), (Zinn and Rapatz, 1995), (Cross, 1994).
Surveyors and hydrographers alike have always been aware of the importance of quality control
(see e.g. the UKOOA recommendations). They know that a mere adjustment of redundant data is
not enough. Proper testing procedures, enabling one to check for errors in the data and/or errors



in the models, need to be included as well, (Baarda, 1968), (Teunissen, 1985). As a consequence
the quality of the survey results can be described in terms of precision and reliability. These
standard procedures of adjustment, testing and quality control are however not directly
applicable to the problem of GPS ambiguity resolution. This is due to the integer nature of the
carrier phase ambiguities. Only in recent years a rigorous theory has emerged for the estimation
and validation of these integer GPS ambiguities (Teunissen, 1993). In this contribution we will
focus on one aspect of this theory, namely the success rate of integer ambiguity estimation. For
more details on the theory and its application, we refer to the list of the references.

2.  The quality of ambiguity resolution
Ambiguity resolution is that part of the GPS data adjustment in which the ambiguities are
constrained to integers. The idea is that the precision of the GPS baseline improves when use is
made of these integer constraints. The procedure for incorporating these constraints can be
divided into three steps. In the first step one simply performs a standard adjustment. Hence, in
this first step the integer constraints are still disregarded. As a result one obtains the real-valued
least-squares solution for both the ambiguities and the baseline(s). This solution is often referred
to as the ‘float’ solution. In the second step the most likely integer values of the ambiguities are
determined. They are determined from the real-valued least-squares ambiguities of the first step.
Finally in the third step, these integer values of the ambiguities are used to adjust the ‘float’
baseline solution of the first step. As a result one obtains the so-called ‘fixed’ baseline solution.
For more details on the computational intricacies of this procedure we refer to (Teunissen,
1993), (de Jonge and Tiberius, 1996).
It is of course not enough to perform the above computations and be done with it. One can
always compute an integer ambiguity solution, whether it is of good quality or not. One therefore
still needs to consider the quality of the solution so computed. In case of ambiguity resolution
this is particularly critical. Unsuccessful ambiguity resolution, when passed unnoticed, will often
lead to unacceptable errors in the positioning results. In the current practice of GPS positioning
there are unfortunately no rigorous measures in place to diagnose the quality of ambiguity
resolution. Although use is made of important precision- and reliability measures, such as
PDOPs (Position Dilution of Precision) and MDBs (Minimal Detectable Biases), no measure is
yet available that is particularly focussed on ambiguity resolution. Hence, the user has no way of
knowing how often he can expect the computed ambiguity solution to coincide with the true, but
unknown integer solution. Is this nine out of ten times, ninety-nine out of a hundred, or a higher
percentage? It will surely never equal one hundred percent. After all, the integer ambiguities are
computed from the data, and since the data are subject to uncertainty, so are the computed
integer ambiguities. Although a success rate of a hundred percent is impossible, the user will
clearly not accept a much smaller percentage. A succes rate of ninety percent may seem high, but
it still means that only nine out of ten position fixes are based on correct integer ambiguities.
This will not be acceptable in applications where one aims at a high productivity, such as in case
of instantaneous (on-the-fly) GPS positioning.
In order to obtain a proper measure for the success rate of ambiguity resolution, one needs the
probability distribution of the integer ambiguities (Teunissen, 1997a). Of this probability mass
function, the probability of correct integer estimation is particularly of importance. This
probability will be denoted as P a a( )

ù = . It describes how often the computed vector of integer
ambiguities, 

ù
a , will equal the unknown, but true vector of ambiguities, a. This probability

depends on three contributing factors: the observation equations (the functional model), the
precision of the observables (the stochastic model) and the chosen method of integer ambiguity
estimation. Changes in any one of these will affect the success rate.



3. Integer bootstrapping
As to the method of integer ambiguity estimation, one has a variety of options available
(Teunissen, 1998a). Here we will restrict ourselves to one of the simpler methods, the method of
integer bootstrapping. The integer bootstrapped ambiguity vector follows from applying a
sequential rounding scheme to the real-valued least-squares ambiguities. It goes as follows. If n
ambiguities are available, one starts with the first ambiguity and rounds its value to the nearest
integer. Having obtained the integer value of this first ambiguity, the real-valued estimates of all
remaining ambiguities are then corrected by virtue of their correlation with the first ambiguity.
Then the second, but now corrected, real-valued ambiguity estimate is rounded to its nearest
integer. Having obtained the integer value of the second ambiguity, the real-valued estimates of
all remaining n-2 ambiguities are then again corrected, but now by virtue of their correlation
with the second ambiguity. This process is continued until all ambiguities are taken care of. In
essence this ‘bootstrapping’ technique boils down to the use of a sequential conditional least-
squares adjustment, with a conditioning on the integer ambiguity values obtained in the previous
steps.
It can be shown that the success rate of this bootstrapped integer estimation method is given as
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where Φ(x) denotes the integral of the standardized normal probability density function from
minus infinity to x. This probability equals the product of n terms, where n equals the number of
carrier phase ambiguities. In each term the Φ-function needs to be evaluated using one of the
sequential conditional standard deviations

σ ü , ,ai I
i nfor = 1ê

This is the standard deviation of the ith ambiguity, conditioned on the assumption that all
previous I={1,..., (i-1)} ambiguities are known. The above success rate was introduced in
(Teunissen, 1997a) and has been used in (Teunissen et al., 1998a,b) to analyse the reliability of
ambiguity resolution for different GPS models.

4. Bootstrapping and ambiguity decorrelation
Although the above given expression gives the exact value of the bootstrapped success rate, it
should be noted that the method of integer bootstrapping is not invariant for a reordering or a
permutation of the ambiguities. The result of integer bootstrapping may change when the
ordering of the ambiguities is changed. Thus also the corresponding success rate may change
when the ordering of the ambiguities is changed. This lack of invariance also applies when one
changes the definition of the ambiguities. There are different ways of defining DD ambiguities.
When defining DD ambiguities, one has to specify which satellite is taken as the reference
satellite. Since each satellite can be chosen as reference, one already has as many definitions of
the DD ambiguities. Since each such set of DD ambiguities will have a different variance-
covariance matrix, also the sequential conditional variances and the bootstrapped success rate
will differ for the different sets. This implies that one set of DD ambiguities will have a higher
success rate than another set. Since the bootstrapped success rate gets larger when the sequential
conditional variances get smaller, one should aim at using an ambiguity parametrization which
gives the smallest possible sequential conditional variances. A method which has this aim in
mind is the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method. By means
of the ambiguity decorrelation process of this method, the original DD ambiguities are
transformed to new ambiguities which all have much smaller conditional variances. The method



was introduced in (Teunissen, 1993) and has since then been used for various applications. A
few examples are (Tiberius and de Jonge, 1995), (Han, 1995), (de Jonge and Tiberius, 1996),
(Boon and Ambrosius, 1997), (Boon et al., 1997), (Jonkman, 1998). The conclusion reads
therefore that one should first apply the LAMBDA method before commencing with the integer
bootstrapping. Thus also the computation of the above given success rate should be based on the
sequential conditional variances of the transformed ambiguities obtained by means of the
LAMBDA method.

5.  Ambiguity dilution of precision
Although the above given procedure for computing the bootstrapped success rate is the one that
should be preferred, it would still be helpful if a simpler diagnostic measure could be found.
Such a measure is the Ambiguity Dilution of Precision (ADOP). It was introduced in (Teunissen,
1997b) and it has been applied to different GPS models in (Teunissen and Odijk, 1997). The
ADOP is based on the determinant of the variance-covariance matrix of the least-squares
ambiguities and it is defined as

ADOP Q cyclea
n= det ( )ü

1

where Qâ denotes the variance-covariance matrix of the ambiguities and n its order. The ADOP
is a scalar measure and it is expressed in the ‘unit’ of cycles. The ADOP has a number of
interesting properties, three of which will be mentioned here. The ADOP equals the geometric
average of the sequential conditional standard deviations of the least-squares ambiguities. This
follows from the fact that the determinant of the variance-covariance matrix of the ambiguities
equals the product of the n sequential conditional variances. The ADOP is thus a simple measure
for the average precision of the ambiguities. It can be used as a design parameter. No actual
measurements are needed to compute the ADOP. Only the variance-covariance matrix of the
ambiguities is needed. This variance matrix can be computed from the design matrix and the
variance matrix of the GPS observables.
An important property of the ADOP is its invariance against the choice of ambiguity
parametrization. Since all admissible ambiguity transformations can be shown to have a
determinant which equals one, the ADOP does not change when one changes the definition of
the ambiguities. It therefore measures the intrinsic precision of the ambiguities.
The ADOP can also be used to provide an upperbound for the success rate of integer
bootstrapping. This upperbound reads as

P a a
ADOP

n( ) [ ( ) ]
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This relation shows how the ADOP can be used to infer whether the success rate of integer
bootstrapping is not too small. As mentioned earlier the left-hand side of the inequality depends
on the chosen ambiguity parametrization. The right-hand side, however, is invariant for this
choice. Hence the above upperbound covers the success rates for all possible choices of
ambiguity parametrization. This means that when using the ADOP in the above upperbound, one
does not have to worry about the definition that has been used in the formation of the
ambiguities.

6.  Some examples
We will now show how the ADOP can be used to study the success rate of ambiguity resolution
for various measurement set-ups. One can choose to use the ADOPs directly, or alternatively
choose to use them for the computation of the upperbounds of the ambiguity success rates. Both
approaches will be shown. To get a feeling of how the two approaches are related numerically,



consider the following. Let us assume that one aims at an ambiguity success rate not smaller than
99%. To reach such a success rate for a single ambiguity requires a standard deviation of about
0.2 cycle. Hence, if n=1 and ADOP=0.2, thenP a a( )

ù = = 99% . When we keep the ADOP fixed,
this probability will get smaller when n gets larger. Thus for larger n, smaller ADOP-values are
needed to get the same probability. Since P a a( ) .

ù = = 99 9% in case ADOP=0.15 and n=1, the
corresponding upperbound follows as (99.9%)n. This upperbound equals 99% in case n=10.

Example 1: short baseline geometry-free model
A GPS model is referred to as a ‘short baseline’ model when the ionospheric delays are assumed
absent. The geometry-free GPS model is the simplest model one can think of for ambiguity
resolution. In this model the DD observation equations are parametrized in terms of the DD
receiver-satellite ranges instead of in the baseline components. Due to this parametrization, the
information content of the relative receiver-satellite geometry is not used. Hence the term
‘geometry-free’. The geometry-free model can of course not be used directly for positioning
purposes. It can be used however for determining the integer values of the DD carrier phase
ambiguities, see e.g. (Hatch, 1982), (Dedes and Goad, 1994), (Teunissen, 1996), (Teunissen and
Odijk, 1997), (Jonkman, 1998). Once the integer ambiguities have been determined, the carrier
phases will act as if they are very precise pseudoranges. Precise positioning is then possible by
means of these ‘resolved’ carrier phases (de Jong, 1998).
Figure 1 shows the ADOPs for the short baseline geometry-free model as function of the number
of epoch-samples used. The ADOPs are shown for the single frequency (L1) and for the dual-
freqeuncy (L1+L2) case. They are also shown for a different number of satellites tracked. For the
geometry-free model a minimum of 2 satellites is needed. The standard deviation of the
undifferenced phase observation was set at 3mm and the undifferenced standard deviation of the
pseudorange (code) observation was set at 30cm. Unless otherwise stated, these same values are
also used in the remaining part of this contribution.
The figure shows that the improvement in the ADOPs, when increasing the number of satellites,
is marginal. This is a consequence of not using the relative receiver-satellite geometry. The
figure also shows that there is a significant difference between the single- and dual frequency
case. The ADOPs of the dual-frequency case are significantly smaller than those of the single-
frequency case (note the logarithmic scale). The figure shows that one can not expect to have a
successful ambiguity resolution in the single-frequency case, when one aims at an ADOP of 0.15
cycle.
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Figure 2: L1 and L1+L2 ADOPs for a varying
pseudorange precision
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Figure 1: L1 and L1+L2 ADOPs for the short
baseline geometry-free GPS model



It will be clear that the ADOP depends on the observation precision. Changes in the standard
deviations will change the ADOP. Significant changes in the precision of the carrier phase
measurements are not likely. Over the years though, the precision of the pseudoranges did
change. Due to technological advances, the precision of the receiver-outputted pseudoranges has
improved.
Figure 2 shows for the two-satellite case, what a change in the pseudorange precision does to the
ADOPs. The standard deviations were set at the values 60cm, 30cm and 10cm. The full curves
correspond to the single-frequency case and the dashed curves to the dual-frequency case. The
figure shows that single-frequency ambiguity resolution becomes feasible when the pseudorange
precision reaches the level of 10cm or better.

Example 2: long baseline geometry-free model
In case of long baselines the ionospheric delays can not be neglected anymore. These delays will
have to be included as unknowns into the observation equations. As a consequence, dual-
frequency data are needed per se to be able to solve the model. Figure 3 shows the corresponding
ADOPs. Note that these dual-frequency ADOPs are of about the same magnitude as the single-
frequency ADOPs of the short baseline model. Since the values of the ADOPs stay well above
the 0.3 cycle level, one can not expect to have a successful ambiguity resolution.

It is of course quite disappointing that one can not expect to have a successful ambiguity
resolution for the long baselines. One should keep in mind however that the above results are
based on the assumption that all ambiguities need to be resolved. The success rate of ambiguity
resolution improves if one settles for resolving less ambiguities, for instance only the most
precise half of the number of ambiguities. This is shown in figure 4.

Example 3: ambiguity resolution for attitude determination
So far we considered the single baseline, geometry-free model. The ADOPs may also be
computed for other type of GPS models. Consider a four-receiver network used for attitude
determination. In this case we have a geometry-based model, since the relative receiver-satellite
geometry is included in the observation equations. The network consists of three independent
baselines. Since these baselines are usually extremely short, the atmospheric delays are
neglected.
Figure 5 shows the corresponding ADOP-profile for a period of 24 hours at the location
Plymouth on 7 January 1999. This ADOP-profile is based on the 4-receiver GPS attitude model
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Figure 3: ADOPs for the long baseline geometry-free
GPS model
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using single epoch, dual-frequency data. Hence, it corresponds to the case of instantaneous
attitude determination. The cut-off elevation was set at 20 degrees.
Since the relative receiver-satellite geometry is now included in the model, one can expect the
ADOPs to be smaller than the dual-frequency, single-epoch ADOPs of figure 1. And indeed as
figure 5 shows, most of the ADOP-values are about 0.1 cycle or even much smaller. The figure
shows also however, that there are still two periods for which the ADOPs are larger than 0.15
cycles. Hence, there are still two periods in the day where successful ambiguity resolution for
instantaneous attitude determination may turn out to be problematic. Of course, the ADOPs will
improve if one assumes that a lower cut-off elevation is permitted. For the present case, all
ADOPs will be smaller than 0.07 cycles if a cut-off elevation of 10 degrees is used.

Example 4: short baseline geometry-based model
So far we have plotted the ADOPs. In this last example we will use the ADOPs to plot the
upperbound of the ambiguity success rates. These upperbounds are shown in figure 6 for the
single epoch, short baseline, geometry-based model, for a period of 24 hours at the location
Plymouth on 7 January 1999. The single-frequency case (cut-off elevation of 10 degrees) is
shown in figure 6a and the dual-frequency case (cut-off elevation of 20 degrees) is shown in
figure 6b. From figure 6a we learn that there are periods in which one should not rely too much
on the results of instantaneous ambiguity resolution using L1 data only. The success rates in
these periods are simply too small. A similar result can be seen for the dual-frequency case in
figure 6b. Note however that the cut-off elevation has now been set at the value of 20 degrees.
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Figure 5: 24-hour ADOP-profile for instantaneous attitude determination,
based on dual-frequency data, using a cut-off elevation of 20 degrees
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Figure 6a: Single-frequency case (cut-off 10 degrees)
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Figure 6b: Dual-frequency case (cut-off 20 degrees)
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