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ABSTRACT

Carrier phase ambiguity resolution is the key to fast and high precision GPS kinematic position-
ing. Critical in the application of ambiguity resolution is the quality of the computed integer
ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to
unacceptable errors in the positioning results. In order to describe the quality of the integer
ambiguities, their distributional properties need to be known. This contribution introduces the
probability mass function of the integer least-squares ambiguities. This integer normal distribu-
tion is needed in order to infer objectively whether or not ambiguity resolution can expected to
be successful. Some of its properties are discussed. Attention is given in particular to the prob-
ability of correct integer estimation. Various diagnostic measures are presented for evaluating
this probability.

Keywords: ambiguity resolution, integer normal distribution, probability of correct integer
ambiguity estimation

1 Introduction

GPS ambiguity resolution is the process of resolving the unknown cycle ambiguities of the double-
di�erence (DD) carrier phase data as integers [Hofmann-Wellenhof et al., 1997], [Kleusberg and
Teunissen, 1996], [Leick, 1995], [Strang and Borre, 1997]. Once resolved, one usually keeps
the ambiguities �xed at their computed integer estimates. That is, all the results that depend
on the ambiguity resolution process are usually evaluated as if the integer ambiguities were
deterministic constants. From a theoretical point of view this is not correct. The estimated
ambiguities, although integer, are still stochastic variates. They have been computed from the
data and since the vector of observables is assumed to be random, also the integer ambiguity
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estimator is a random vector. Conceptually we may write �a = F (y), where �a denotes the integer
ambiguity vector, y the vector of observables, and F (:) the mapping from the continuous vector
of observables to the integer vector of ambiguities. Thus when y is random, �a is random as
well. As far as their randomness is concerned, the marked di�erence between y and �a is that the
probability distribution of y is continuous, whereas that of �a is of the discrete type. Thus �a has
a probability mass function attached to it. This point was emphasized in [Teunissen, 1990] and
highlighted again in [Teunissen, 1997a] as one of the pitfalls in the more classical approaches to
ambiguity resolution.

Although theoretically not correct, it is possible that a treatment of the ambiguities as if
they were deterministic constants is acceptable from a practical point of view. But in order to be
able to judge whether this is feasible or not, one �rst needs to know more about the stochastic
characteristics of the integer ambiguities. That is, one needs to know the probability mass
function of the ambiguities and in addition, have means available of evaluating this distribution.

In this contribution we will assume that the data are normally distributed and we will
use the integer least-squares criterion as estimation principle. This combination assures that a
maximum likelihood solution is obtained. In addition, the solution is admissible and minimax as
well. But other principles can also be used. One of the earliest is the ambiguity function method
[Counselman and Gourevitch, 1981]. A Bayesian approach is used in [Betti et al., 1993], and
[Blewitt, 1989] and [Dong and Bock, 1989] used the bootstrapped estimator. The distribution of
the bootstrapped estimator was studied in [Teunissen, 1998a].

This contribution is organized as follows. In Sect. 2 a brief review is given of the conceptual
steps in solving the integer least-squares problem. In Sect. 3 we present the probability mass
function of the integer least-squares ambiguities. This distribution is coined the integer normal
distribution. In Sect. 4 we discuss some properties of this distribution. We show that it is
symmetric and that its maximum equals the probability of correct integer estimation. We also
show that the integer least- squares ambiguities are unbiased and that their precision bounds
the probability of correct integer estimation. In Sect. 5 �nally, we present some approaches
for evaluating the integer normal distribution. Although an exact evaluation is rather di�cult,
approximations and bounds are given for the probability of correct integer estimation. Some
of these approaches were already discussed in [Teunissen, 1997a-c]. The �rst approach is based
on simulating the probability mass function. This is possible, since the shape of distribution
is independent of the unknown integer ambiguities. For the second approach we make use of
the bootstrapped ambiguity estimator. Its probability of correct integer estimation is easily
computed. In the third approach we use eigenvalues to bound the variance matrix of the integer
least- squares ambiguities. Finally in the last approach, the minimum grid point distance, as
measured by the metric of the ambiguity variance matrix, is used to obtain bounds on the region
of integration.

2 Integer least-squares estimation

As our point of the departure we will take the following system of linear(ized) observation
equations

y = Aa+Bb+ e (1)



where y is the given data vector, a and b are the unknown parameter vectors and e is the noise
vector. In principle all the GPS models can be cast in this frame of observation equations. The
data vector will then usually consist of the 'observed minus computed' single- or dual-frequency
double-di�erenced (DD) phase and/or pseudo range (code) observations, accumulated over all
observation epochs. The entries of the n-vector a are the DD carrier phase ambiguities, expressed
in units of cycles rather than range. They are known to be integer valued. The entries of the p-
vector b consist of the remaining unknown parameters, such as for instance baseline components
(coordinates) and possibly atmospheric delay parameters (troposphere, ionosphere).

When using the least-squares principle, the above system of observation equations can be
solved by means of the minimization problem

min
a;b

(y �Aa�Bb)TQ�1
y (y �Aa�Bb) ; a 2 Zn ; b 2 Rp (2)

withQy the variance-covariance matrix of the observables, Zn the n-dimensional space of integers
and Rp the p-dimensional space of real numbers. This type of least-squares problem was �rst
introduced in [Teunissen, 1993] and has been coined with the term 'integer least-squares'. It is
a nonstandard least-squares problem due to the integer constraints a 2 Zn.

Conceptually one can divide the computation of the solution to (2) into three di�erent steps.
In the �rst step one simply disregards the integer constraints on the ambiguities and performs
a standard least- squares adjustment. As a result one obtains the (real-valued) least- squares
estimates of a and b, together with their variance- covariance matrix"

â

b̂

#
;

"
Qâ Qâb̂
Qb̂â Qb̂

#
(3)

This solution is often referred to as the '
oat' solution. In the second step the '
oat' ambiguity
estimate â and its variance- covariance matrix are used to compute the corresponding integer
ambiguity estimate. This implies solving the minimization problem

min
a2Zn

(â� a)TQ�1
â (â� a) (4)

Its solution will be denoted as �a. Finally in the third step, the integer ambiguities are used to
correct the '
oat' estimate b̂. As a result one obtains the '�xed' solution

�b = b̂�Qb̂âQ
�1
â (â� �a) (5)

Thus in summary, the '
oat' solutions â and b̂ follow from solving (2) without the integer con-
straints, while the '�xed' solutions �a and �b follow from solving (2) with the integer constraints
included.

From a computational point of view, the most di�cult part in the above three steps is the
solution of (4). The di�culty lies in the fact that most GPS least-squares ambiguities are highly
correlated. This is due to the short observation time spans used and the fact, that in case of
GPS, the relative receiver-satellite geometry changes only slowly with time. As a consequence
of the high correlation, the search needed to solve (4) becomes very time consuming. To remedy
this situation, the least-squares ambiguity decorrelation adjustment (LAMBDA) was introduced



[Teunissen, 1993], [Jonge de and Tiberius, 1996]. By means of the decorrelation process of this
method the original DD ambiguities are transformed to new ambiguities which have the property
of being far more precise than the original ambiguities, see also the textbooks [Kleusberg and

Teunissen, 1996], [Hofmann-Wellenhof et al., 1997], [Strang and Borre, 1997]. Examples of
practical results can be found in e.g. [Tiberius and de Jonge, 1995], [Jonge de and Tiberius,
1996], [Jonkman, 1998].

The goal of the present contribution is not to discuss the intricacies of the above com-
putational steps, but instead to present some of the distributional properties of the integer
least-squares estimator �a. This is in particular of relevance for GPS ambiguity resolution. It
is namely only through the distributional properties of �a that one will be able to objectively
decide whether or not a successful '�xing' of the integer ambiguities is likely to happen.

3 The distribution of the integer least-squares ambiguities

It will be assumed that our vector of observables is normally (Gaussian) distributed with mean
Efyg = Aa + Bb and dispersion Dfyg = Qy. As a result the (real-valued) least-squares am-
biguities will be normally distributed too, with mean a and variance-covariance matrix Qâ.
Thus

y � N(Aa+Bb;Qy) =) â � N(a;Qâ) (6)

Note that the mean of the real-valued least-squares estimator is an integer vector. The multi-
variate normal probability density function of â reads therefore

pâ(a) =
1p

det(Qâ)(2�)
1
2
n
expf�1

2
k â� a k2Qâ

g (7)

with the squared weighted norm k : k2Qâ
= (:)TQ�1

â (:) and a 2 Zn.
Since the integer least-squares ambiguities follow from solving (4), they are functions of the

stochastic real valued least-squares ambiguities and therefore stochastic variates themselves as
well. Thus both â and �a are random vectors, although their distributions di�er. The distribution
of â is a continuous one, whereas the distribution of �a is of the discrete type. The mapping from
the continuous random vector â to the discrete random vector �a is namely a many-to-one map.
To see this, consider the following subset of Rn

Sz = fx 2 Rn j k x� z k2Qâ
� k x� u k2Qâ

;8u 2 Zng (8)

It contains all values of â which are mapped to the single integer grid point z 2 Zn when solving
the integer least- squares problem (4). Thus the integer least-squares solution equals z when â
lies in Sz and vice versa. Hence

â 2 Sz () �a = z (9)

Thus the subset Sz acts as a pull-in-region for â. That is, whenever â lies in the subset Sz,
it is pulled to z, being the centre grid point of the set. These pull-in-regions were studied by
[Jonkman, 1998] for the geometry-free GPS model. Note that each integer grid point z 2 Zn

has such a pull-in-region assigned to it. Also note that these subsets are disjoint and that they



together cover Rn, i.e. Szi \ Szj = f0g for i 6= j and Rn = [z2ZnSz. With this information it is
now possible to formulate the probability mass function of �a. It reads

P (�a = z) = P (â 2 Sz) =

Z
Sz

1p
det(Qâ)(2�)

1
2
n
expf�1

2
k x� a k2Qâ

gdx ; a; z 2 Zn (10)

The discrete distribution of the integer least-squares ambiguities follows thus from mapping the
volume of the normal distribution over the subsets Sz to each of their centre grid points z.
Since this distribution does not appear to have a name yet, see e.g. [Johnson et al., 1994], we
will coin it the integer normal distribution. In the following section we will present some of its
properties.

4 Properties of the integer normal distribution

In this section we will focus on a few properties of the integer normal distribution. They are
related to the mode and shape of the distribution.

4.1 The probability of correct integer estimation is largest

Of the in�nite number of probability masses of (10), there is one which is particularly of impor-
tance for GPS ambiguity resolution. It is P (�a = a), the probability of correct integer estimation.
This is the probability that �a coincides with the true but unknown integer mean a. In order for
the integer least-squares principle to make sense, the least we can ask of this principle is that the
resulting probability of correct integer estimation is always larger than any of the probabilities
of wrong integer estimation. We will now show that this indeed holds true. Thus

max
z2Zn

P (�a = z) = P (�a = a) (11)

This will be proven by showing thatZ
Sa
c expf�1

2
k x� a k2Qâ

gdx �
Z
Sa
c expf�1

2
k x� z k2Qâ

gdx =

Z
Sz
c expf�1

2
k x� a k2Qâ

gdx

where c is the proportionality factor of the multivariate normal distribution. Note that the
left-hand side equals P (�a = a) and the right-hand side P (�a = z). The inequality follows by
noting that â 2 Sa implies expf�1

2 k â � a k2Qâ
g � expf�1

2 k â � z k2Qâ
g ; 8z 6= a. In

order to prove the above integral equality, we apply the general transformation formula for
integrals [Fleming, 1977]. The following change of variable transformation is applied to the
second integral, T : x = �y+a+z. Note that the absolute value of the Jacobian equals one and
that the region of integration transforms from Sa to Sz, since T

�1(Sa) = fy 2 Rn j k y� z k2Qâ
�

k y � a� z + u k2Qâ
; 8u 2 Zng = Sz. This shows that the above integral equality holds true.

Although it is of course comforting to know that the probability of correct integer estimation
is the largest of all nonzero probabilities, it is not su�cient for ambiguity resolution to be
successful. For that to be the case, one still has to evaluate the probability of correct integer
estimation and check whether its value is su�ciently close to one. This issue will be taken up
in Sect. 5.



4.2 The integer normal distribution is symmetric

Apart from knowing the maximum of the probability mass function, it is also of interest to know
how the probability masses are distributed about this maximum. This concerns the shape of
the distribution. We know that the multivariate normal distribution (7) is symmetric about a.
We will now show that the corresponding integer normal distribution is symmetric about a as
well. We have

P (�a = a� z) = P (�a = a+ z) ; 8z 2 Zn (12)

In order to show this, we have to proveZ
Sa�z

c expf�1

2
k x� a k2Qâ

gdx =

Z
Sa+z

c expf�1

2
k x� a k2Qâ

gdx

This result follows from applying the change of variable transformation, T : x = 2a � y and
noting that T�1(Sa�z) = fy 2 Rn j k y � a� z k2Qâ

� k y � 2a+ u k2Qâ
; 8u 2 Zng = Sa+z.

4.3 The '
oat' and '�xed' solutions are unbiased

A third property of the integer least-squares estimator is its unbiasedness. We are thus in the
happy situation that not only the real-valued least-squares ambiguities are unbiased, but their
integer least-squares counterparts as well. Hence,

Ef�ag = Efâg = a (13)

This property of unbiasedness is a direct consequence of the symmetry of the distribution. To
see this, recall the de�nition of the expectation of �a. It reads Ef�ag = P zP (�a = z), with the
sum taken over all grid points of Zn. This may also be written as Ef�ag =P(z+a)P (�a = a+ z)
and as Ef�ag =P(a� z)P (�a = a� z). Taking the sum of these last two expressions and noting
that P (�a = a + z) = P (�a = a � z), gives 2Ef�ag =

P
2aP (�a = a + z) = 2a from which the

unbiasedness follows.
From the unbiasedness of the integer least-squares ambiguities it also follows that the '�xed'

solution �b is unbiased. For the '
oat' solution we have Efâg = a and Efb̂g = b. This together
with Ef�ag = a, shows that the expectation of (5) is given as

Ef�bg = Efb̂g = b (14)

With the above results we have proven that the inclusion of the integer constraints does not
introduce any biases when using the least- squares principle. That is, the '�xed' solutions are
unbiased whenever the '
oat' solutions are. But biases may still be introduced of course, when
models are used that are misspeci�ed (e.g. due to cycle slips or outliers in the data).

Finally we note that the property of unbiasedness is not restricted to the integer least-squares
estimator. Certain other integer estimators can be shown to be unbiased as well. Such a class
of unbiased integer estimators was introduced in [Teunissen, 1998b].



4.4 Precision and probability of the integer ambiguities

Although it is comforting to know that the integer least-squares ambiguities are unbiased, this
is not enough for ambiguity resolution to be successful. For that to be the case, we also need a
su�ciently small variability of the integer least-squares ambiguities about their integer means.
We will now show how the ambiguity precision is related to the probability of correct integer
estimation.

By de�nition, the variance-covariance matrix of the integer least-squares ambiguities is given
as

Q�a =
X
z2Zn

(z � a)(z � a)TP (�a = z) (15)

where, as before, a denotes the integer mean of �a. The sum is taken over all grid points in Zn.
Note the absence of P (�a = a) in the above expression. This shows that the expected variability
of �a is due to the probabilities of wrong integer estimation. Hence, the integer ambiguities will
have a poor precision if the probabilities of wrong integer estimation are not negligible. The
reverse of this statement is true as well. That is, if the variance of the integer ambiguities is
su�ciently small, then the probability of correct integer estimation is su�ciently large. To see
this, consider the jth diagonal entry of (15). It reads

cTj Q�acj =
X
z2Zn

[cTj (z � a)]2P (�a = z)

where cj denotes the jth canonical unit vector. The left-hand side equals the variance of the jth
integer ambiguity. In the sum on the right-hand-side, the contribution for z = a is absent and the
non-zero minimum of [cTj (z�a)]2 equals 1. This gives the inequality �2�aj �

P
z2Znnfag P (�a = z),

or P (�a = a) � 1 � �2�aj . Since such an inequality holds for all diagonal entries of the ambiguity
variance matrix, we �nally get

P (�a = a) � 1� 1

n
trace Q�a (16)

This shows that the probabiliy of correct integer estimation is bounded from below by one minus
the average variance of the integer least- squares ambiguities. Hence, smaller variances will push
the probability of correct integer estimation closer to one. In fact, this probability equals one
already when one of the variances of the integer least-squares ambiguities vanishes.

5 Evaluation of the integer normal distribution

In this section we will present di�erent approaches for evaluating the integer normal distribution.
Particular attention will be given to the probability of correct integer estimation. Although these
approaches di�er in the way they try to approximate this probability, they all make use of the
variance matrix of the least-squares ambiguities. The �rst approach is based on simulating the
probability of correct integer estimation. The second approach uses the probability of correct
integer estimation of a less optimal integer estimator, namely the bootstrapped estimator. The
third approach uses bounds on the ambiguity variance-covariance matrix to obtain corresponding
bounds on the probability of correct integer estimation. Finally, in the last approach such bounds
are obtained by bounding the region of integration.



5.1 Simulating the probability mass function

In general it is very di�cult to evaluate the integer normal distribution (10) exactly. This is due
to the rather complicated geometry of the integration region Sz. The method of simulation can
however be used to obtain approximations of the probabilities P (�a = z). This goes as follows.
We know that the '
oat' solution is distributed as â � N(a;Qâ). We also know that the integer
normal distribution is symmetric about the mean a. Hence, in order to obtain the required
probability masses we may shift the distribution over a and restrict our attention to N(0; Qâ),
draw samples from it and use these samples to obtain the corresponding integer samples by
means of solving (4). Repeating this procedure a su�cient number of times, allows us then to
built up the required frequency table. The probability of correct integer estimation is then given
as P (�a = 0).

Thus �rst one starts generating, using a random generator, n independent samples from
the univariate standard normal distribution, say s1; : : : ; sn from N(0; 1). These samples are
then collected in the vector s = (s1; : : : ; sn)

T and transformed by means of â = Gs, where
matrix G equals the Cholesky factor of the ambiguity variance-covariance matrix Qâ, i.e. Qâ =
GGT . Hence, â is now a sample from N(0; Qâ). Using this sample to solve (4) results in the
corresponding integer least-squares sample. By repeating this process an N -number of times,
one obtains a collection of N integer vectors. Of this collection one can now infer how often a
particular grid point, say z, is visited. This gives the frequency Nz. An approximation to the
required probability masses follows then from the relative frequencies. Thus

P (�a = z) � Nz

N
(17)

Successful ambiguity resolution can now be expected feasible when the probability P (�a = 0) is
su�ciently close to one. Note that this procedure requires that problem (4) has to be solved
N -times. For large N , this becomes a very time consuming task if not an e�cient search is in
place for solving the integer least-squares problem. This shows that the simulation should not be
based on the original DD ambiguities, but instead on the transformed ambiguities obtained by
means of the LAMBDA method [Teunissen, 1993], [Jonge de and Tiberius, 1996]. The integer
normal distribution of the transformed ambiguities di�ers of course from the one of the DD
ambiguities. For the DD ambiguities for instance, the nonzero probabilities P (�a = z), with
z 6= 0, will be more spread out. However, since there is a one-to-one correspondence between
the two distributions, the probability of correct integer estimation will be the same for both
distributions.

In order to get an idea of how large N should be taken in the simulation, we consider the
probability that N0 out of N integer vectors equal the zero vector. If the N samples are drawn
independently from the normal distribution N(0; Qâ), then this probability is governed by the
binomial distribution and is given as

P (N0) =
N !

(N �N0)!N0!
PN0
0 (1� P0)

N�N0

where we made use of the abbreviation P0 = P (�a = 0). The mean (expectation) and variance



(dispersion) of the relative frequency N0=N follow therefore as

EfN0=Ng = P0 and DfN0=Ng = P0(1� P0)=N

Note that the �rst expression is in fact the motivation for using the relative frequency as an
estimator for P0, the probability of correct integer estimation. The second expression gives the
precision of this estimator. It depends on both P0 and N .

Using the above mean and variance we may now apply the Chebyshev inequality to obtain
an upperbound on the probability that the relative frequency N0=N di�ers more than � from
P0. The corresponding Chebyshev inequality reads

P (j N0

N
� P0 j � �) � P0(1� P0)

N�2
(18)

The required number of samples N can be obtained by setting both � and the upperbound to
a small enough value. For instance, when the probability of correct integer estimation equals
P0 = 1 � 10�3, an upperbound of one percent and a deviation of � = 10�3 leads to a required
number of samples of N = 105. This shows that in general a large number of samples are needed
to get a su�ciently precise estimate of the probability of correct integer estimation. Instead of
using the above Chebyshev inequality, one may also use the Gaussian approximation for the
binomial distribution to obtain an estimate of the required number of samples, when N is large.
This will usually give a somewhat less conservative estimate of N .

Instead of using a random generator to obtain samples of the integer normal distribution,
one may of course apply the same idea to actual 'real-world' experiments. In that case the
experiment will consist of repeatedly estimating the integer ambiguities, while keeping count of
the success rates. Such a study was performed in [Jonkman, 1998] for the geometry-free model
and in [Tiberius and de Jonge, 1995] for the geometry-based GPS model.

5.2 Probability of the bootstrapped estimator

Instead of using simulation, one may also try to formulate bounds on the probability of correct
integer least-squares estimation. One such bound is obtained if we consider the probability of a
less optimal integer estimator, the bootstrapped estimator.

As it was remarked earlier, it is di�cult in general to evaluate the integer normal distribution
(10) exactly. The evaluation becomes relatively simple though when â is a scalar or when Qâ

is diagonal. In the scalar case the integer least- squares estimator coincides with the operation
'round to the nearest integer'. For this case the integer normal distribution takes the form

P (�a = i) =

Z (i�a)+ 1
2

(i�a)� 1
2

1

�â
p
2�

expf�1

2
(x=�â)

2gdx (19)

where i ranges over the set of integers. For the purpose of ambiguity resolution we are partic-
ularly interested in the probability of correct integer estimation. This probability is given as
P (�a = a) = P (j â�a j� 1

2), which can be evaluated by means of (19). The probability of correct
integer estimation becomes then

P (�a = a) = 2�(
1

2�â
)� 1 with �(x) =

Z x

�1

1p
2�

expf�1

2
z2gdz (20)



In the multivariate case one can still use the 'rounding operation' to obtain the integer least-
squares solution, provided the variance- covariance matrix is diagonal. In that case the problem
decouples into n scalar problems of the above type. Hence, the probability of correct integer
estimation becomes then

P (�a = a) = �n
i=1[2�(

1

2�âi
)� 1] (21)

In the actual practice of GPS, the ambiguity variance-covariance matrix is of course fully pop-
ulated and therefore nondiagonal. Expression (21) does therefore not apply. However, a similar
expression can be obtained if we consider the so-called bootstrapped estimator. This integer
estimator follows from a sequential conditional least- squares adjustment and is computed as
follows. If n ambiguities are available, one starts with the �rst ambiguity â1, and rounds its value
to the nearest integer. Having obtained the integer value of this �rst ambiguity, the real-valued
estimates of all remaining ambiguities are then corrected by virtue of their correlation with the
�rst ambiguity. Then the second, but now corrected, real-valued ambiguity estimate is rounded
to its nearest integer. Having obtained the integer value of the second ambiguity, the real-valued
estimates of all remaining n� 2 ambiguities are then again corrected, but now by virtue of their
correlation with the second ambiguity. This process is continued until all ambiguities are taken
care of. Since the components of this bootstrapped estimator are conditionally independent, it
follows that its probability of correct integer estimation takes the form of (21), but now with the
unconditional standard deviations replaced by their sequential conditional counterparts. Thus
if we denote the bootstrapped estimator as �aB , we have

P (�aB = a) = �n
i=1[2�(

1

2�âij(i�1);:::;1

)� 1] (22)

where �âij(i�1);:::;1
denotes the conditional standard deviation. It can be shown that this prob-

ability provides an upperbound on the probability of correct integer estimation based on the
simple 'componentwise rounding' mechanism, i.e. P (�aB = a) � P (\ni=1 j âi � ai j� 1

2 ), see
[Teunissen, 1998a]. The bootstrapped solution will thus more often lead to the correct integer
ambiguities than the solution based on the 'componentwise rounding'. In fact, when (22) is
su�ciently close to one, the bootstrapped estimator becomes a viable alternative to the integer
least-squares estimator. Note however that (22) depends on the conditional standard deviations
of the individual ambiguities. Since the �rst three conditional standard deviations of the DD
ambiguities are known to be large in general [Teunissen, 1996], the probability P (�aB = a) can
expected to be small when using DD ambiguities. This shows that one should �rst apply the
decorrelation process of the LAMBDA method, before using (22) to evaluate the probability of
correct integer estimation.

5.3 Bounding the ambiguity variance matrix

Another way to get a grip on the probability of correct integer estimation, while at the same time
avoiding the complicated integration of (10), is to make use of scaled unit matrices as variance
matrices. We know that the computation of the probability of correct integer estimation becomes
straightforward when the ambiguity variance matrix is diagonal. That is, when the least-squares



ambiguities are fully decorrelated. This suggests that we bound the actual ambiguity variance
matrix from above and below by diagonal matrices, and compute the probability of correct
integer estimation that would belong to these diagonal matrices. The simplest way of bounding
the actual ambiguity variance matrix from above and below, is to make use of its maximum and
minimum eigenvalue. This gives

�minIn � Qâ � �maxIn

Using these bounds, the corresponding bounds for the probability of correct integer estimation
reads

[2�(
1

2
p
�max

)� 1]n � P (�a = a) � [2�(
1

2
p
�min

)� 1]n (23)

Note that the two bounds coincide when the two extreme eigenvalues coincide. This is the case
when the ambiguity variance matrix itself is a scaled unit matrix. In the actual practice of
GPS this will not happen. In fact, the two extreme eigenvalues will di�er considerably when the
variance matrix of the DD ambiguities is used. In that case the above two bounds would become
too loose to be useful. When using the decorrelated ambiguities as produced by the LAMBDA
method, the elongation of the ambiguity search space is considerably reduced and the ratio of
the two extreme eigenvalues is pushed towards its minimum of one. Hence, the above bounds
are much sharper when using the eigenvalues of the transformed ambiguity variance matrix,
than when using the eigenvalues of the original DD ambiguity variance matrix.

5.4 Bounding the region of integration

Another way to get a grip on the probability of correct integer estimation is to replace the
original region of integration Sa by a subset La � Sa and by an enclosing set Ua � Sa. In that
case the probability of correct integer estimation lies in the interval

P (â 2 La) � P (�a = a) = P (â 2 Sa) � P (â 2 Ua) (24)

Both regions of integration should of course be chosen such that the corresponding probabilities
are easily evaluated in practice. The probability P (â 2 La) can then be used to infer whether
ambiguity resolution can expected to be successful, while the probability P (â 2 Ua) will show
when one can expect successful ambiguity resolution to fail. Thus there is enough con�dence
that ambiguity resolution will be successful when the lowerbound is su�ciently close to one,
while no such con�dence exists when the upperbound turns out to be too small.

In the following we will use the minimum grid point distance, or minimum norm, to bound
the region of integration [Teunissen, 1997b]. The smallest distance between two integer grid
points, as measured in the metric of the ambiguity variance matrix, will correspond with the
situation that one has the greatest di�culty in discriminating between two grid points. Hence,
if this distance is large enough one can expect ambiguity resolution to be succesful. On the
other hand, succesful ambiguity resolution will become problematic if this distance is too small.



5.4.1 The probability P (â 2 Ua)

Let us �rst consider the geometry of the pull-in-region Sa. Since

k â� a k2Qâ
� k â� z k2Qâ

() (z � a)TQ�1
â (â� a) � 1

2
k z � a k2Qâ

;8z 2 Zn

it follows that

Sa = fâ 2 Rn j j wi j � 1

2
k ci kQâ

;8ci 2 Zng with wi =
cTi Q

�1
â (â� a)q

(ci)TQ
�1
â (ci)

(25)

Note that wi is the well-knownw-test statistic for testing one- dimensional alternative hypotheses
[Baarda, 1968], [Teunissen, 1985]. It is distributed as wi � N(0; 1). Geometrically, wi can be
interpreted as an orthogonal projector which projects (â�a) onto the direction vector ci. Hence,
Sa is the intersection of the banded subsets fâ 2 Rn j j wi j � 1

2 k ci kQâ
g, all centred at a and

each having a width k ci kQâ
. Since any �nite intersection of these banded subsets encloses Sa,

the following choice for Ua is suggested

Ua = fâ 2 Rn j j wi j � 1

2
k ci kQâ

; i = 1; : : : ; pg � Sa (26)

Thus Ua is taken as the intersection of p such bands. Note that the choice for p and for the grid
vectors ci is still left open. The simplest choice would be p = 1. In that case the probability is
easily evaluated due to the standard normal distribution of w1. For c1 one could still take any
one of the grid vectors. The best choice in this case would be the nonzero grid vector having
shortest length. The probability reads then

P (â 2 Ua) = 2�(
1

2
min

z2Znnf0g
k z kQâ

)� 1 (27)

This probability can now be used as upperbound for the probability of correct integer estimation.
If a sharper upperbound is needed, one will have to choose p larger than 1. The situation becomes
then more complicated due to the fact that the wi are correlated. In order to tackle this case,
we �rst de�ne the p-vector

v = (v1; : : : ; vp)
T with vi =

wi

k ci kQâ

(28)

Then Ua = fâ 2 Rn j \pi=1 j vi j � 1
2g. The probability P (â 2 Ua) equals therefore the

probability that the 'componentwise rounding' of the vector v = (v1; : : : ; vp)
T produces the zero

vector. Hence, we can now make use of the bootstrapped results of the previous subsection.
That is, P (â 2 Ua) and thus also P (�a = a) will be bounded from above by the probability that
the 'sequential rounding' of the entries of v produces the zero vector. Hence,

P (�a = a) � �p
i=1[2�(

1

2�vij(i�1);:::;1

)� 1] (29)



where �vij(i�1);:::;1
denotes the conditional standard deviation of vi. These sequential conditional

standard deviations of v follow from applying an LDLT -decomposition to the variance-covariance
matrix of v. The entries of this variance-covariance matrix Qv are given as

�vivj =
cTi Q

�1
â cj

k ci k2Qâ
k cj k2Qâ

(30)

After applying the LDLT -decomposition to this variance-covariance matrix, the sequential con-
ditional variances follow as the diagonal entries of the diagonal matrixD. Note that the variance-
covariance matrix needs to be of full rank in order to avoid that some of the conditional variances
of v become zero. This implies that the grid vectors ci, i = 1; : : : ; p � n, need to be linear inde-
pendent.

5.4.2 The probability P (â 2 La)

As with the choice Ua � Sa, also a choice for the subset La � Sa can be made by considering
the geometry of the pull-in-region Sa. Note that the widths of the bands that make up the
intersection of (25) vary in length. This shows that a subset of Sa can be obtained by replacing
all these varying widths by one single width, namely the smallest one. Hence, fâ 2 Rn j j wi j �
1
2 minz2Znnf0g k z kQâ

;8zi 2 Zng � Sa. Moreover, since j wi j= 1
2 minz2Znnf0g k z kQâ

describes

a pair of opposite planes of support of the ellipsoid k â � a k2Qâ
= (12 minz2Znnf0g k z kQâ

)2

[Teunissen, 1996], it follows that the ellipsoid
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)2g (31)

is also a subset of Sa. We therefore have the lowerbound

P (�a = a) � P (�2(n; 0) � (
1

2
min

z2Znnf0g
k z kQâ

)2) (32)

with �2(n; 0) the central Chi-square distribution with n degrees of freedom. These probabilities
can be computed using [Johnson et al., 1994]

P (�2(n; 0) � x) =
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Note that for n = 1, we have �2(1; 0) = N2(0; 1) and minz2Znnf0g k z k2Qâ
= 1=�2â. This shows

that for the one-dimensional case, (32) reduces to (20). The upperbound (29) and lowerbound
(32) are then also identical.

Note that the minimum grid point distance is used in both the upperbound (27) and lower-
bound (32). Computation of this integer least-squares problem can be avoided if one settles for
less sharp bounds, using eigenvalues and/or (conditional) variances. The following four bounds
can then be used instead,8><
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(33)



with �2âi and �2âijI being the ith unconditional and conditional ambiguity variance respectively,

and with �min and �max being the two extreme eigenvalues of the ambiguity variance matrix.
Note, although the minimum norm is invariant for the choice of ambiguity parametrization, that
the above bounds depend on the type of ambiguities used.

The �rst lowerbound follows from the de�nition of the maximum eigenvalue. The second
lowerbound, sharper than the �rst, follows when the square of the grid point distance is given
a sum-of-squares form using the LDU -decomposition and noting that this sum is never smaller
than the �rst nonzero entry in the sum. To use this lowerbound, one still needs to check whether
zi 6= 0; zj = 0 for j < i. This can be avoided by taking as lowerbound the smallest reciprocal
(conditional) ambiguity variance. For the unconditional variances this can be understood as
follows. Since z 6= 0, at least one of its entries is nonzero, say zi. Thus the reciprocal value of
�2âi can be taken as lowerbound. But this shows that certainly the minimum of all reciprocal
ambiguity variances can be used as lowerbound. For the conditional variances a similar reasoning
applies. The �rst upperbound follows from applying Kantovorich inequality, see e.g. [Rao,
1973], with z chosen as the canonical unit vector having 1 as its ith entry. Finally, the second
upperbound follows from taking the length of z = (1; 0; : : : ; 0)T as upperbound.

6 Summary

In this contribution we introduced the discrete distribution of the integer least-squares ambi-
guities and called it the integer normal distribution. This probability mass function was shown
to be symmetric and centred at the integer mean of the real-valued least-squares ambiguity
vector â. It was also shown that the '�xed' solutions �a and �b are unbiased. Hence, no biases are
introduced when collapsing the pull-in-regions Sz to their respective grid points. The maximum
of the integer normal distribution coincides with the probability of correct integer estimation.
Since this maximum is particularly of relevance for GPS ambiguity resolution, we presented
di�erent approaches for evaluating this maximum. It was pointed out that an exact evaluation
is rather di�cult in general, due to the complicated geometry of the pull-in-regions. The �rst
approach was based on reconstructing the probability mass function by means of a simulation.
The second approach made use of the integer bootstrapped estimator. Due to the sequential
conditioning on which this estimator is based, the probability of correct integer estimation is
easily evaluated for the bootstrapped estimator. The third approach was based on bounding
the ambiguity variance matrix. Finally, the last approach was based on geometric bounds for
the pull-in-regions, where use was made of the minimum grid point distance.

When comparing the di�erent approaches, a few remarks can be made. The advantage of
the �rst approach, although rather computational intensive, is that the approximations of the
probabilities can be obtained in principle with any desired level of accuracy. This is not the case
with the approaches that use bounds, although they are often much easier to evaluate. Here
one generally depends on the precision of the least-squares ambiguities. The more precise the
ambiguities are, the sharper the bounds generally become. The only in
uence one can exercise
on the bounds is by using a proper ambiguity parametrization. That is, the noninvariant bounds
can be made sharper by using decorrelated ambiguities instead of DD ambiguities. Note however
that not all bounds converge to the exact probability of correct integer estimation in case the



ambiguity variance matrix becomes a diagonal matrix. This is only the case for the second and
third approach, but not for the last approach.

We emphasize in conclusion that the integer normal distribution is completely speci�ed by
the variance-covariance matrix of the real- valued least-squares ambiguities. Hence, all diagnostic
measures presented can be computed once this matrix is known. This implies that it is possible to
compute the probability of correct integer estimation before the actual measurements are carried
out. Only the design matrix and variance-covariance matrix of the GPS observables need to
be known. The theory presented in this contribution can therefore be used to analyse di�erent
measurement scenarios as to their strength in resolving the integer ambiguities successfully.
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