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Abstract

This contribution presents the probability distribution of the '�xed' GPS baseline. This is the
baseline which is used in fast and high precision GPS kinematic positioning. It follows from an
ambiguity resolution process in which the carrier phase ambiguities are estimated as integers.
For the estimation of the carrier phase ambiguities the principle of integer least-squares is used.
By means of the '�xed' baseline distribution it becomes possible to infer the quality of the
positioning results. In particular their dependence on the quality of GPS ambiguity resolution is
made clear. The mean and variance matrix of the '�xed' baseline estimator are also determined.
It shows that the '�xed' baseline estimator is unbiased and that the di�erence of its precision
with that of its conditional counterpart is governed by the precision of the integer least-squares
ambiguities.
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1 Introduction

The purpose of GPS ambiguity resolution is to improve the precision of the baseline estimator.
As a consequence shorter observation time spans can be used, than would have been necessary
otherwise to obtain a comparable precision. As a measure for the precision of the '�xed' baseline
one usually takes the variance matrix that follows from assuming the ambiguities to be deter-
ministic and known. From a theoretical point of view this is not correct, since the estimated
integer ambiguities are not deterministic but random variates. Hence in order to describe the
precision of the '�xed' baseline, the random characteristics of the estimated integer ambiguities
will have to be taken into account as well.
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It is the purpose of this contribution to present the probability distribution of the '�xed'
baseline. This will be done for the case the ambiguities are estimated using the integer least-
squares principle. Once this distribution is known, one is in the position to describe, in a
qualitative as well as quantitative way, the quality that can be attached to the '�xed' baseline
estimator. One will then also be able to determine its �rst two moments, that is, its mean and
variance matrix.

This contribution is organized as follows. In Sect. 2 we formulate our assumptions and
briey present the basic steps for solving an integer least-squares problem. In Sect. 3 we
discuss the scalar case and present the corresponding ambiguity distribution as well as baseline
distribution. The results of this section are generalized to the more realistic vectorial case in
Sect. 4. In this section we �rst present the distribution of the integer least-squares ambiguities.
It is a probability mass function, which is referred to as the integer normal distribution. Using
the probability mass function of the ambiguities, the distribution of the '�xed' baseline estimator
is presented next. It equals a weighted sum of conditional distributions, with the weights given
by the probability masses of the ambiguity distribution. From this distribution of the baseline
estimator we then �nally determine the �rst two moments.

2 Integer least-squares estimation

In principle all the GPS models can be cast in the following conceptual frame of linear(ized)
observation equations

y = Aa+Bb+ e (1)

where y is the given data vector, a and b are the unknown parameter vectors of order n and
q respectively, and where e is the noise vector of order m. The matrices A and B are the
corresponding design matrices of order m � n and m � q respectively. The matrix (A;B) is
assumed to be of full rank. In case of GPS the data vector will usually consist of the 'observed
minus computed' single- or dual-frequency double-di�erenced (DD) phase and/or pseudo range
(code) observations, accumulated over all observation epochs. The entries of vector a are the
DD carrier phase ambiguities, expressed in units of cycles rather than range. They are known
to be integers. The entries of vector b consist of the remaining unknown parameters, such
as for instance baseline components (coordinates) and possibly atmospheric delay parameters
(troposphere, ionosphere).

When using the least-squares principle, the above system of observation equations can be
solved by means of the minimization problem

min
a;b

(y �Aa�Bb)TQ�1
y (y �Aa�Bb) ; a 2 Zn ; b 2 Rq (2)

with Qy the variance-covariance matrix of the observables and where Zn and Rq denote the
n-dimensional space of integers and the q-dimensional space of real numbers respectively. This
is a nonstandard least-squares problem, due to the integer constraints on the ambiguities. This
type of least-squares problem was �rst introduced in [Teunissen, 1993] and has been coined with
the term 'integer least-squares'.

Conceptually one can divide the computation of (2) into three di�erent steps. In the �rst
step one simply disregards the integer constraints on the ambiguities and performs a standard



least-squares adjustment. As a result one obtains the (real-valued) least-squares estimates of a
and b, together with their variance-covariance matrix"
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This solution is often referred to as the 'oat' solution. In the second step the 'oat' ambiguity
estimate â and its variance- covariance matrix are used to compute the corresponding integer
ambiguity estimate. This implies that one has to solve the minimization problem

min
a2Zn

(â� a)TQ�1
â (â� a) (4)

Its solution will be denoted as �a. Once this integer solution is computed, it is �nally used in the
third step to correct the 'oat' estimate of b. As a result one obtains the '�xed' solution

�b = b̂�Q
b̂â
Q�1
â (â� �a) (5)

From a computational point of view, the most di�cult part in the above three steps is the com-
putation of the solution of (4). It requires the minimization of a quadratic form over the whole
n- dimensional space of integers. In [Teunissen, 1993] the least- squares ambiguity decorrelation
adjustment (LAMBDA) was introduced as a method for computing the integer least-squares
ambiguities in a rigorous and e�cient way, see also [Teunissen, 1995], [de Jonge and Tiberius,
1996] and the textbooks [Kleusberg and Teunissen, 1996], [Hofmann-Wellenhof et al., 1997] and
[Strang and Borre, 1997].

In this contribution we will not discuss the computational intricacies of the above procedure.
Instead, we will present the statistical properties of the '�xed' estimator �b. For that purpose we
�rst have to state our assumptions concerning the vector of observables y. It will be assumed
that y is normally distributed as

y � N(Aa+Bb;Qy) (6)

This implies that the least-squares principle (2) corresponds to �nding the maximum likelihood
solution. It is well-known from adjustment theory, that if y is distributed as (6), then â and b̂ are
normally distributed too as well as unbiased. Their (marginal) probability density distributions
are given as

pâ(�) =
1p

det(Qâ)(2�)
1

2
n
expf�1

2
(� � a)TQ�1

â (� � a)g (7)

and

p
b̂
(�) =

1q
det(Q

b̂
)(2�)

1

2
q
expf�1

2
(� � b)TQ�1

b̂
(� � b)g (8)

It is the purpose of this distribution to �nd the corresponding distributions for the '�xed' solu-
tion. To this end we will consider the scalar case, n = 1 and q = 1, �rst.



3 The distribution in the scalar case

In this section we will assume that both �a and �b are scalars. Although not realistic within
the context of GPS ambiguity resolution, the scalar case has the advantage of being relatively
straightforward, while it still retains most of the characteristics of the vectorial case. Treatment
of the scalar case therefore prepares us for our discussion of the vectorial case. We will �rst
present the distribution of �a and then the distribution of �b.

3.1 The distribution of �a

In the scalar case we have
â � N(a; �2â) ; a 2 Z (9)

Hence, â is normally distributed with integer mean a and variance �2â. Its probability density
function is given as

pâ(�) =
1

�â
p
2�

expf�1

2
(
� � a

�â
)2g (10)

In the scalar case the minimization problem (4) reduces simply to a rounding of the 'oat'
ambiguity â to its nearest integer. If we denote 'rounding to the nearest integer' by '[.]', the
integer least-squares ambiguity reads

�a = [â] (11)

In order to determine the distribution of the integer least-squares estimator, we need the prob-
ability that �a = i, for i 2 Z. This probability equals the area under the normal distribution of
â over the interval (i� 1

2 ; i+
1
2). Hence, the distribution of �a reads

P (�a = i) = P (j â� i j� 1

2
) =

Z i+ 1

2

i� 1

2

pâ(�)d� (12)

Note that we use capital 'P ' for probability and small 'p' for the density. The result (12) shows
that the distribution of �a is of the discrete type. It is a probability mass function. Note that
it is symmetric about the integer mean a and that it reaches its maximum for i = a. Both
these properties are of importance. The property of symmetry about a implies that the integer
estimator �a = [â] is unbiased. Thus Ef�ag = a. Also the second property, maxi P (�a = i) =
P (�a = a), is a comforting one. It states that of all integers, the largest probability mass is
located at the integer a.

For GPS ambiguity resolution the probability P (�a = a) is particularly of relevance. It is the
probability of correct integer estimation. In the scalar case, this probability is relatively easy to
evaluate. To see this, we �rst use the integral of the standard normal distribution

�(x) =

Z x

�1
1p
2�

expf�1

2
�2gd�

to write the above probability mass function as

P (�a = i) = �(
i� a

�â
+

1

2�â
)� �(

i� a

�â
� 1

2�â
) (13)



The probability of correct integer estimation follows then as

P (�a = a) = 2�(
1

2�â
)� 1 (14)

Note, as expected, that the probability of rounding to the correct integer value increases as the
standard deviation of â gets smaller.

3.2 The distribution of �b

Since the distribution of the 'oat' solution is known, it is not too di�cult to make qualitative
statements about its probabilistic characteristics. For instance, let Ri;�0(�; �) be a rectangle in
R2 which is centred at (i; �0) and which has side lengths of 1 and 2� respectively. Thus

Ri;�0(�; �) = f(�; �) 2 R2 j j � � i j � 1

2
; j � � �0 j � �g (15)

The probability that the oat solution lies in this rectangle reads then

P ((â; b̂) 2 Ri;�0(�; �)) =

Z Z
Ri;�0

(�;�)
p
âb̂
(�; �)d�d� (16)

with p
âb̂
(�; �) the joint density of â and b̂. To obtain the (marginal) probability for b̂, we �rst

note that the intervals j �� i j � 1
2 , i 2 Z, divide the real-axis R in an almost mutually exclusive

way. The only overlap these intervals have, occurs at their boundaries. This implies that we
can sum (16) over all integers i 2 Z to obtain the probability

P (j b̂� �0 j � �) =
P

i2Z
R R

Ri;�0
(�;�) pâb̂(�; �)d�d�

=
R
j���0j�� pb̂(�)d�

=
R
j���0j��

1
�
b̂

p
2�

expf�1
2 (

��b
�
b̂
)2gd�

(17)

This result holds for the 'oat' solution b̂, but not for the '�xed' solution �b. In order to obtain
a corresponding result for the '�xed' solution, we �rst need to �nd the region of integration
that would correspond with (15). For that purpose consider the estimation rule of integer
least-squares. It reads

â! �a =) b̂! �b = b̂� �
b̂â
��2â (â� �a) (18)

Thus when â gets mapped to �a, then b̂ gets mapped to �b. Geometrically, this mapping can be
described as follows. Since the region covered by the con�dence ellipse of the 'oat' solution is
given as

C(�; �) = f(�; �) 2 R2 j
"
� � a
� � b

#T "
�2â �

âb̂

�
b̂â

�2
b̂

#�1 "
� � a
� � b

#
� �2g (19)

the line through its centre (a; b) intersecting the ellipse at the two points where it has a vertical
tangent, reads � = b� �

b̂â
��2â (a � �). Parallel to this line we have the line � = b̂� �

b̂â
��2â (â �



�). It passes through the 'oat' solution (â; b̂), as well as through the '�xed' solution (�a;�b).
The conclusion reads therefore that every potential 'oat' solution (�; �) for which j � � i j �
1
2 and � = b̂��

b̂â
��2â (â� �) holds true, gets mapped to the same integer least-squares solution

�a = i and �b = b̂� �
b̂â
��2â (â� i). This implies that it is the region

Si;�0(�; �) = f(�; �) 2 R2 j j � � i j � 1

2
; j (� � �0)� �

b̂â
��2â (� � i) j � �g (20)

which gets mapped by the integer least-squares rule to the rectangle (15). Note that also
Si;�0(�; �) is centred at (i; �0). It is not a rectangle however, but a parallelogram which has the
same area as the rectangle.

We are now in the position to determine the probability for the '�xed' solution �b. From the
above relation between (15) and (20), it follows that

P ((â;�b) 2 Ri;�0(�; �)) = P ((â; b̂) 2 Si;�0(�; �)) (21)

This shows that the probability for the '�xed' solution can be computed from the joint distribu-
tion of the 'oat' solution, using the appropriate region of integration. For the '�xed' solution �b
we therefore have instead of (17),

P (j �b� �0 j� �) =
P

i2Z
R R

Si;�0 (�;�)
p
âb̂
(�; �)d�d�

=
P

i2Z
R R

Si;�0 (�;�)
p
b̂jâ(� j �)pâ(�)d�d�

=
P

i2Z
R R

Si;�0 (�;�)
1

�
b̂jâ

p
2�

expf�1
2 (

��b(�)
�
b̂jâ

)2g 1
�â
p
2�

expf�1
2(

��a
�â

)2gd�d�

=
P

i2Z [
R
j���0j��

1
�
b̂jâ

p
2�

expf�1
2 (

��b(i)
�
b̂jâ

)2gd�]P (j â� i j� 1
2)

(22)
with

b(i) = b� �
b̂â
��2â (a� i) and �2

b̂jâ = �2
b̂
� �2

âb̂
=�2â

being the conditional mean and conditional variance respectively.
The last equation of (22) is our sought for expression for the probability of the '�xed' solution

�b. It equals a weighted sum of conditional probabilities. The weights are given by the probability
mass function of �a and the conditional probabilities are those of the distribution p

b̂jâ(� j � = i).

As with (13), also the above expression can be formulated in terms of the function �(x). It
reads

P (j �b��0 j� �) =
X
i2Z

[�(
�0 � b(i)

�
b̂jâ

+
�

2�
b̂jâ

)��(�0 � b(i)

�
b̂jâ

� �

2�
b̂jâ

)][�(
i� a

�â
+

1

2�â
)��( i� a

�â
� 1

2�â
)]

(23)

4 The distribution in the vectorial case

In this section we will generalize the results of the previous section to the vectorial case. Hence,
�a and �b will be treated as vectors of dimension n � 1 and q � 1 respectively. Within the



context of GPS, the vector �a refers then to the integer least-squares solution of the carrier phase
ambiguities and the vector �b to the corresponding solution of the noninteger parameters in the
model of observation equations. Hence for a single-baseline model of DD observation equations
for which the atmospheric delays are assumed absent, the vector �b contains the solution of the
baseline coordinates and is therefore of dimension q = 3. The dimension of this vector will
be higher than 3 though, when the model includes parameters for the atmospheric delays as
well. The same holds true when a multi-baseline model is used, that is, when more than two
receivers are used. Thus although �b is referred to as the baseline estimator, it is in fact the
'�xed' estimator of all noninteger parameters. For positioning purposes though, the baseline
components of the estimator will be the most relevant ones.

4.1 The distribution of �a

In the scalar case, rounding the 'oat' ambiguity to its nearest integer is equivalent to solving the
minimization problem (4). In general this fails to be true for the vectorial case. It would only be
true when the ambiguity variance-covariance matrix is a diagonal matrix, which is not the case
with GPS. Hence, for the vectorial case we can not simply take the cube \nj=1fj âj � ij j� 1

2g
as a generalization of the interval j â� i j� 1

2 . In order to �nd the proper generalization of the
one-dimensional interval, we need to consider the minimization problem (4) again. Note that
z 2 Zn would solve the minimization problem (4) if and only if the 'oat' solution â satis�es

(â� z)TQ�1
â (â� z) � (â� �)TQ�1

â (â� �) ; 8� 2 Zn (24)

This inequality of the two quadratic forms can also be written as an inequality which is linear
in â,

(� � z)TQ�1
â (â� z) � 1

2
(� � z)TQ�1

â (� � z) ; 8� 2 Zn (25)

Since both z and � are integer, and since the inequality should hold for all � 2 Zn, we may
replace (� � z) by c 2 Zn and write (25) as

j w(â; c; z) j� 1

2

q
cTQ�1

â c ; 8c 2 Zn (26)

with

w(â; c; z) =
cTQ�1

â (â� z)q
cTQ�1

â c

Note that w(â; c; z) is the well-known w-test statistic for testing one-dimensional alternative
hypotheses [Baarda, 1968], [Teunissen, 1985]. It is the test statistic used for testing Ho :

Efâg = z against Ha : Efâg = z + cr, with 1
2

q
cTQ�1

â c as 'critical value'. Geometrically,
the w(â; c; z) can be interpreted as orthogonal projectors that project (â� z) onto the direction
vectors c 2 Zn. Hence for a single vector c 2 Zn, the inequality of (26) describes the region

between two parallel hyperplanes which are a distance
q
cTQ�1

â c apart, centred at z and which
have the vector c as their normal. Since the inequality must hold for all integer vectors c, the



multivariate generalization of the one- dimensional interval j � � i j � 1
2 equals the intersection

of all subsets bounded by these parallel hyperplanes. It reads

Sz(�) = \8c2Znf� 2 Rn j j w(�; c; z) j � 1

2

q
cTQ�1

â cg (27)

This region contains all values of â = � which will be mapped to the single integer grid point
z 2 Zn when solving the integer least- squares problem (4). Thus the integer least-squares
solution equals z when â lies in Sz(�) and vice versa. Hence

â 2 Sz(�)() �a = z (28)

Note that each integer grid point z 2 Zn has such a subset assigned to it and that Rn =
[8z2ZnSz(�). These subsets act as pull-in-regions for â 2 Rn. That is, whenever â lies in such
a subset Sz(�), it is pulled to z, being the centre grid point of the set. Also note that Sz(�) can
be seen as a generalization of the interval j � � i j� 1

2 or of the cube \nj=1fj �j � ij j� 1
2g. It

reduces to the interval when n = 1 and it reduces the the cube when the matrix Qâ is diagonal.
We are therefore now in the position to generalize (12) to the vectorial case. The probability
mass function of �a reads

P (�a = z) = P (â 2 Sz(�)) =

Z
Sz(�)

1p
det(Qâ)(2�)

1

2
n
expf�1

2
(� � a)TQ�1

â (� � a)gd� (29)

The discrete distribution of the integer least-squares ambiguities follows thus from mapping the
volume of the multivariate normal distribution over the subsets Sz(�) to their respective centre
grid points z 2 Zn. This distribution was introduced in [Teunissen, 1998] where it was called
the integer normal distribution.

4.2 The distribution of �b

In order to determine the distribution of the '�xed' solution �b, we proceed in a way which is
similar to the approach used for the scalar case. We therefore �rst generalize (21). It reads

P ((â;�b) 2 Rz;�0(�; �)) = P ((â; b̂) 2 Sz;�0(�; �)) (30)

with
Rz;�0(�; �) = Sz(�)�R�0(�)
Sz;�0(�; �) = Sz(�)� Tz;�0(�; �)
R�0(�) = f� 2 Rp j k � � �0 k � �g
Tz;�0(�; �) = f� 2 Rp j k (� � �0)�Q

b̂â
Q�1
â (� � z) k � �g

This shows that the probability for the '�xed' solution can be computed from the joint dis-
tribution of the 'oat' solution, using the appropriate region of integration. In this region of
integration we recognize the Cartesian product of the pull-in-regions Sz(�) with the Tz;�0(�; �).
For the '�xed' solution �b we therefore have,

P (k �b� �0 k � �) =
P

z2Zn

R R
Sz;�0(�;�)

p
âb̂
(�; �)d�d�

=
P

z2Zn

R R
Sz;�0(�;�)

p
b̂jâ(� j �)pâ(�)d�d�

=
P

z2Zn [
R
R�0

(�0) pb̂jâ(�
0 j � = z)d� 0][

R
Sz(�)

pâ(�)d�]

(31)



for which the change-of-variable transformation"
�
� 0

#
=

"
In 0

�Q
b̂â
Q�1
â Ip

# "
� � z
�

#
+

"
z
0

#

was used to obtain the last equality. In this last equation we recognize the conditional dis-
tribution of b̂, p

b̂jâ(� j � = z), and the probability mass function of �a. Hence, we may also
write

P (k �b� �0 k � �) =

=
P

z2Zn [
R
k���0k ��

1p
det(Q

b̂jâ
)(2�)

1
2
q
expf�1

2(� � b(z))TQ�1
b̂jâ(� � b(z))gd�]P (�a = z)

(32)

with
b(z) = b�Q

b̂â
Q�1
â (a� z) and Q

b̂jâ = Q
b̂
�Q

âb̂
Q�1
â Q

âb̂

being the conditional mean and conditional variance matrix respectively. This result is the
sought for multivariate generalization of (22). Note that we did not yet specify the norm taken
in (32). If we choose the norm to satisfy k : k2Q

b̂jâ
= (:)TQ�1

b̂jâ(:), the above probability can be

expressed in terms of noncentral Chi-square distributions. We have

P (k �b� �0 kQ
b̂jâ
� �) =

X
z2Zn

P (�2(q; �z) � �2)P (�a = z) (33)

with �2(q; �z) the noncentral Chi-square distribution with q degrees of freedom and noncentrality
parameter �z =k b(z) � �0 k2Q

b̂jâ
. This result follows when using the property that if a random

q-vector x is normally distributed as x � N(�x; Qx), then xTQ�1
x x � �2(q; �TxQ

�1
x �x).

In (33) one is still free in choosing �0. In case one wants to know by how much the '�xed'
baseline estimator deviates from its mean, the choice �0 = b should be taken. The expression
for the noncentrality parameter simpli�es then to

�z = (a� z)T (Q�1
âjb̂ �Q�1

â )(a� z) (34)

4.3 The mean and variance matrix of �b

Having obtained the distribution of �b, we will now determine the expectation and dispersion of
the '�xed' baseline estimator, that is, its mean and variance matrix. They are de�ned as

Ef�bg = ��b =
R
�p�b(�)d�

Df�bg = Q�b =
R
(� � ��b)(� � ��b)

T p�b(�)d�
(35)

Using the results of the previous subsection, we obtain for the mean

Ef�bg =
P

z2Zn [
R
�p

b̂jâ(� j � = z)d�]P (�a = z)

=
P

z2Zn b(z)P (�a = z)

= b�Q
b̂â
Q�1
â (a�Pz2Zn zP (�a = z))

(36)



In this last expression we recognize the mean of �a. It equals a since the probability mass function
P (�a = z) is symmetric about a. From this it follows that

Ef�bg = Efb̂g = b (37)

Hence not only the 'oat' solution is unbiased, but the '�xed' solution as well. This is a com-
forting result. It shows that the integer least-squares ambiguity estimation does not introduce
any biases into the '�xed' baseline estimator. Of course, biases may still be present in the '�xed'
baseline estimator due to e.g. cycle slips or outliers. But this is then due to the fact that a
misspeci�ed model is used. It is not a consequence of having used the principle of integer least-
squares.

Again using the results of the previous subsection, we obtain for the variance matrix of the
'�xed' baseline estimator

Q�b =
P

z2Zn [
R
(� � b)(� � b)T p

b̂jâ(� j � = z)d�]P (�a = z)

=
P

z2Zn [
R
(� � b(z))(� � b(z))T p

b̂jâ(� j � = z) + (b� b(z))(b � b(z))T ]P (�a = z)

= Q
b̂jâ +Q

b̂â
Q�1
â [
P

z2Zn(z � a)(z � a)TP (�a = z))]Q�1
â Q

âjb̂

(38)

In this last expression we recognize the variance matrix of �a. The variance matrix of the '�xed'
baseline estimator follows therefore as

Q�b = Q
b̂jâ +Q

b̂â
Q�1
â Q�aQ

�1
â Q

âjb̂ (39)

This shows that the precision of the '�xed' baseline estimator �b is always poorer than that of the
conditional baseline estimator b̂ j â. The di�erence of the two is governed by the precision of the
vector of integer least-squares ambiguities �a, which on its turn is governed by the probability
mass function P (�a = z). The two variance matrices will only coincide when P (�a = a) = 1, that
is, when the probability of correct integer estimation equals one.

5 Summary

In this contribution the probability distribution of the '�xed' GPS baseline estimator was pre-
sented. By means of this distribution it becomes possible to diagnose the quality of the '�xed'
GPS baseline and to infer the contribution of GPS ambiguity resolution. For the estimation of
the carrier phase ambiguities the integer least-squares principle was used.

It was shown that the distribution of the '�xed' baseline equals a weighted sum of conditional
distributions, with the weights being determined by the probability mass function of the integer
least-squares ambiguities. The conditional distributions in this sum di�er only in their means.

Using the distribution it was also shown that the '�xed' baseline estimator is an unbiased
estimator. Hence, the inclusion of the integer ambiguity constraints and the estimation of the
carrier phase ambiguities by means of the integer least-squares principle does not introduce any
biases into the baseline solution. Finally, the variance matrix of the '�xed' baseline estimator



was determined. The expression so obtained clearly shows by how much the precision of the
'�xed' baseline estimator di�ers from its conditional counterpart, that is, from the estimator
that follows from assuming the ambiguities to be deterministic and known.

Finally we note, although the term 'baseline estimator' was used, that the results presented
hold for all noninteger parameters in the GPS model of observation equations, thus also, if ap-
plicable, for the atmospheric delay parameters such as used for the ionosphere and troposphere.
For positioning purposes though, the baseline components of the estimator will then be the most
relevant ones.
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