CLOSED FORM EXPRESSIONS FOR THE VOLUME OF
THE GPS AMBIGUITY SEARCH SPACES

P.J.G. Teunissen
Delft Geodetic Computing Centre (LGR)
Faculty of Geodesy
Delft University of Technology
Thijseweg 11
2629 JA Delft, The Netherlands

Abstract

In this contribution we present closed form expressions for the volumes of the GPS ambiguity search spaces. This
is done for the geometry-free model, the time-averaged model and the geometry-based model. We also discriminate
between single-frequency data and dual-frequency data, and between phase-only cases and phase and code cases.
Our results provide an intrinsic precision description of the least- squares ambiguities and explicit show the various
factors that influence it.

1 Introduction

Integer ambiguity estimation is a prerequisite for fast, high precision GPS relative positioning. The various ap-
proaches in use for integer ambiguity estimation, can be distinguished in the way they make use of the available
relative receiver-satellite geometry. The simplest approach possible, is one where one opts for dispensing with the
receiver-satellite geometry. The code data are then almost directly used to determine the integer ambiguities of the
observed phase data. The GPS model on which this approach is based is referred to as the geometry- free model.
Examples can be found in [Hatch, 1982], [Euler and Goad, 1990], [Dedes and Goad, 1994], [Euler and Hatch, 1994]
and [Teunissen, 1996a).

Approaches that do make use of the receiver-satellite geometry are based on the time-averaged model or the
geometry-based model. The latter model is the one which is most commonly used in GPS surveying. It allows for
instantaneous relative positioning, depending on whether both code and phase data or only phase data are used.
Examples can be found in [Blewitt, 1989], [Frei and Beutler, 1990], [Hatch, 1991], [Teunissen, 1993] and [Tiberius
and de Jonge, 1995]. The time-averaged model on the other hand, needs both phase and code data. This model,
which was introduced in [Teunissen, 1996b], is based on the time average of the receiver-satellite geometry. It
can be seen to be situated in between the geometry-free model and the geometry-based model. In the absence of
satellite redundancy, its ambiguity results reduce to that of the geometry-free model and in the absence of a change
in the receiver- satellite geometry, they reduce to that of the geometry-based model.

In this contribution we will develop, for the above mentioned three models, closed form expressions for the
volumes of the ambiguity search spaces, which themselves are scaled versions of the ambiguity confidence ellipsoids.
As experience has shown, the volume of the ambiguity search space is a good indicator for the number of grid
points that are located within the search space. Hence, the closed form formulae give an easy way of downsizing
the ambiguity search space, such that an abundance of unnecessary grid points is avoided.



Since the volume is defined through the determinant of the ambiguity variance matrix, our results also provide
a precision measure of the least-squares ambiguities. In fact, since the determinant is invariant for all admissible
ambiguity transformations possible, our results give a truely intrinsic precision description of the least-squares
ambiguities. The closed formulae derived, clearly show the impact of the various factors that contribute to the
ambiguity precision, such as: use of phase only or of phase and code; use of single-frequency data or of dual-
frequency data; change in receiver-satellite geometry; number of satellites tracked and the number of observation
epochs used.

This contribution is organized as follows. In section 2 we present the volume of the ambiguity search space
and briefly discuss the various steps involved in integer least-squares estimation. In section 3, we start with the
simplest single baseline model possible, the geometry- free model, and derive for it the determinant of the ambiguity
variance matrix. This is first done for the single-frequency case and then for the dual-frequency case. In section 4
it shown how the determinant of the ambiguity variance matrix changes, when instead of the geometry-free model,
the time-averaged model is considered. Finally, the geometry- based model is considered in section 5. Both for the
phase-only case and for the phase and code case, it is shown how the determinant of the ambiguity variance matrix
is affected by the change in the receiver-satellite geometry. The main results are summarized in section 6.

2 Ambiguity search space and its volume

2.1 Integer least-squares estimation

The linear(ized) GPS model of observation equations on which the estimation of the integer ambiguities is based,
is generally of the form
y=Aa+Bb+e (1)

where y is a vector of ’observed minus computed’ double-differenced (DD) GPS observables, a is the vector of
unknown integer ambiguities, b is a vector that includes the unknown baseline components and e is the vector that
takes care of the measurement noise and remaining unmodelled effects. The matrices A and B are the appropriate
design matrices.

In order to solve for the above system of equations, the least-squares principle is applied. Since the ambiguities
are known to be integer, we are dealing with an integer least-squares problem instead of with a standard least-
squares problem. The integer least-squares problem can be solved in three steps. First an ordinary least-squares
solution is computed. Hence, in this step the integer constraints on the ambiguities are discarded. As a result, one
obtains the real-valued least- squares solution and corresponding variance matrices
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This solution is often referred to as the float solution.
In the second step, the results @ and @5 of the first step are used to compute the integer least-squares estimates
of the ambiguities. The integer least-squares estimate of a is denoted as @, and it is the solution of

min (& —a)’Q; ' (@ —a), a integer (3)

Once the minimizer @ has been found, the residual (¢ — @) is used to adjust the float solution b. This is done in
the third step. As a result the fized solution b and its variance matrix are obtained as

6 =b- QE@le(d - d) ’ QE = QE - QB&Q(;lQ&B (4)
The computations needed for the first and third step are rather straightforward and can be based on standard
techniques. Not so however for the second step. Due to the integer constraints on the ambiguities, the solution of
(3) must be obtained by means of a search. An efficient method for computing the integer least-squares ambiguities
has been introduced in [Teunissen, 1993]. It is the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA).
A review of the method is given in the book [Kleusberg and Teunissen (Eds.), 1996] and implementation aspects of

the method can be found in [de Jonge and Tiberius, 1996]. The method makes use of the ambiguity search space,
which when formulated in the space of the original DD ambiguities, is defined as

(@a—a)’Q;'(a—a) <x° ()

It is centred at &, its shape and orientation are governed by Q; and it can be scaled by x2.



2.2 The volume of the ambiguity search space

The volume of the ambiguity search space is given as

Vo = X"UnV| Qa (6)

where n is the order of the ambiguity variance matrix Qg, | Qa | is its determinant and U, is the volume of the unit
sphere in R™. The volume of the unit sphere is given as U,, = 7"/2/T'(n/2 + 1), where T'(z) is the gamma-function.
The required function values of the gamma-function can be computed using the recurrence relation I'(x+1) = zI'(z)
and the initial values T'(1/2) = /7 and I'(1) = 1.

It is intuitively clear that the volume of the ambiguity search space and the number of grid points (points with
integer coordinates) contained in it, must be related. The smaller (larger) the volume becomes, the less (more)
grid points it generally will admit. It is however far less obvious that the volume itself indicates how many grid
points are located within the search space. Of course, this can only be an approximation. The volume is namely
independent of the location and orientation of the search space. Numerical experiments, as reported in [Teunissen
et al., 1996], have shown however, that the volume is indeed an excellent indicator of the number of grid points.
This implies that the volume can be used to downsize the ambiguity search space, such that an abundance of
unnecessary grid points in it is avoided. This is very beneficial for the efficiency of the search.

The volume depends on the determinant of the ambiguity variance matrix. This determinant, when taken to
the power of %, is often also referred to as the generalized variance. It also equals the geometric mean of the
eigenvalues of the ambiguity variance matrix.

In the sections following we will derive closed form formulae for this determinant. An important property of
the determinant is that it is invariant for any admissible ambiguity transformation. As an example consider the
DD ambiguities. Since the DD ambiguities are defined with respect to a choice of reference satellite, their variance
matrix is dependent on this choice as well. This makes it difficult to evaluate the precision of the ambiguities
by means of their variances and covariances. They will namely change, when the choice of reference satellite is
changed. The same problem appears if one would use the trace of the variance matrix as precision measure. Not so
however, if one uses the determinant. The determinant is invariant for the choice of reference satellite. In fact it is
invariant for any admissible ambiguity transformation possible. This is due to the fact that these transformations
are volume preserving. The determinant or generalized variance provides therefore a truely intrinsic measure of
the precision of the ambiguities.

3 The geometry-free model

The geometry-free model is the simplest single GPS baseline model one can think of and one, that at the same
time, still allows one to determine the integer ambiguities. The model is referred to as geometry-free, since it
dispenses with the receiver-satellite geometry. In this section, we will first consider the single-frequency case and
then the dual-frequency case.

3.1 Single frequency case

First we consider the scalar case. In case the receiver-satellite geometry is dispensed with, the observation equations
for a single DD phase observation and a single DD code observation at epoch i, read

®(7) p(i) + AN
p(i) = p(i) i=1,...,k. (7)

where ¢(i) and p(i) are the DD phase and code observations at epoch i, on either the Ly or the Lo frequency;
p(2) is the DD form of the unknown range from receiver to satellite; A is the known wave length of the carrier and
N is the unkown integer ambiguity. It will be assumed that IV stays constant in time. The variance of the DD
phase observable is given as 2042), where 03) is the variance of the single-differenced phase observable. Similarly, the
variance of the DD code observable is given as 2012).

Would the DD ranges p(i) be known, then no code observations would be necessary and the variance of the
least-squares ambiguity, based on k epochs of data, would read
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Hence, due to the very high precision of the phase observations (e.g. o4 ~ 3v/2 mm), one would then have no
difficulties at all to obtain a precise and reliable integer ambiguity after only a few observation epochs. Unfortu-
nately, the ranges are unknown. The code data are therefore needed per se. For a single epoch one would then get,
AN (i) = ¢(i) — p(i). Taking the average over k epochs and applying the error propagation law, gives the ambiguity
variance matrix of the least-squares solution as

2 % o
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This variance is considerably larger in value than the previous one. This is due to the poor precision of the code
observables (e.g. o, =~ 30v/2 c¢m). The situation improves somewhat, if we consider the phase and code data
observed to different satellites, simultaneously. Instead of having two DD obervation equations per epoch as above,
one would then have two times (m — 1) DD observation equations per epoch, with m being the number of satellites
tracked. The (m — 1) DD phase observables are correlated, due to their DD nature, and the same holds true for
the DD code observables. Collecting the (m — 1) DD ambiguities in the vector a = (Ny,..., Np,—1)T, the variance
matrix of the least-squares ambiguities reads then QQ; = %UJQVDTD, where DT is the DD matrix operator of order

(m — 1) x m. The matrix DT D has two’s on its diagonal and one’s as off diagonal entries. Since the determinant
of DT D equals m, it follows that

o} o2 o(m1
[Qal=m ()™ (14+ 2™ (eyeles™™ D) (10)
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This result reduces to that of (9), when m = 2. In the expression for the determinant we recognize m(.)™! as a

derivative. It is due to the differencing of the DD operator. When we rais the determinant to the power ﬁ and
recognize that o4 < 0, we obtain
2
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This shows that the generalized ambiguity variance is governed by the poor precision of the code data and that the
1

correlation due to DD operator helped somewhat (m™-T < 2), but that one still would need quite some observation

epochs (k large), to bring the variance down to an acceptable value.

3.2 Dual frequency case

In the dual-frequency case, we have four observation equations available per epoch. Two for the phase data and
two for the code data. They read

o1 EZ; = P(Z; + §1N1

P2(i) = p(i) + AaNgy

n(i) = pli) (12)
p2(i) = p(i)

The subindex indicates the frequency of the observable, L or L. Again no code data would be necessary in case
the ranges p(i) would be known. In that case the two ambiguities can be determined independently from one
another using the phase data. The variance matrix of the two least-squares ambiguities would then be diagonal.
Denoting the ambiguity vector as N = (N1, N2)T, the determinant of the ambiguity variance matrix reads then

0¢19¢2 2
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Note that we have allowed the precision of the phase data on the two frequencies to differ.

In practice the ranges p(i) are unknown and we need the code data in addition to the phase data. For a single
epoch, we then have

MN(i) = 1(i) = puli)
MaNo(i) = ¢o(i) — puli) (14)



where py, (i) is the weighted average of p; (i) and pa(i),

o p2(i) +op,p1 (i) s Op0p,
puw(i) = 2 2 v Tpy = 3 2 (15)
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The least-squares solution for the ambiguities follows then from taking the time-average of (14). The ambiguity

variance matrix reads then ) ) ) )
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The determinant of this matrix reads
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A comparision with (13) shows that the determinant blows up considerably due to the fact that the ranges p(4)

2
are unknown. The code-variance ratio Zé‘“’ is large (e.g. 10%), due to the poor precision of the code data when

compared to the precision of the phase data.

The four equations (12) are based on the tracking of two satellites only. In case m satellites are tracked, an
(m — 1) number of four such equations are available. The variance matrix of the least-squares ambiguities follows
then as

Qa = %QNQ@DTD (18)

where @ = (..., Nia,---, Nog,..)T, (o = 1,...,(m — 1)) and '®" denotes the Kronecker product. Since the
determinant of the Kronecker product of two square matrices P and @ of order p X p and ¢ X g respectively, is
given as | P® Q |=| P |1] Q |P, the determinant of (18) can be written as | Q4 |=| 3Qx || DTD |?. Together
with (17) this gives
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Compare this with the single-frequency result (10). In order to obtain the generalized ambiguity variance, the
determinant has to be raised to the power m If we assume the phase data to be equally precise, the code
data to be equally precise and recognize that o4 < o, then the generalized variance can be approximated as

1 1 040y 9
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If we compare this to (11), we immediately see the important role which is played by having data on a second
frequency available. Instead of the proportionality to the code-variance 0121, which we had in the single-frequency
case, we now have a proportionality to the product o40,, which of course is much smaller. The impact of the

number of satellites (m+1) and the number of observation epochs used (k), has remained the same.

4 The time-averaged model

In the geometry-free model, the observation equations are parametrized in terms of the DD ranges from receiver to
satellite. Since these equations are linear from the outset, no linearization needed to take place. The observation
equations however, that form the basis of this and the next section, will be parametrized in terms of the three
components of the stationary baseline. These equations are nonlinear and therefore need to be linearized first. For
a single epoch i, the linearized DD observation equations for phase and code read

o(i) = A@)b+ la (21)
p(i) = A(@)D i=1,....k

Note that ¢(i) and p(i) are now vectors that contain, in case m satellites are tracked, respectively the m — 1
‘observed minus computed’ DD phases and the m — 1 ’observed minus computed’ DD pseudoranges. Their variance
matrices are given respectively as UiDTD and 02DTD. The design matrix A(i) is of order (m — 1) x 3 and it



captures the receiver-satellite geometry. The unknown baseline components are the entries of the vector b and the
unknown ambiguities are the entries of the vector a.

In this section we will study the time-averaged version of the above model. First we consider the single-frequency
case and then the dual- frequency case.

4.1 Single frequency case

The time-averaged model follows from taking the time average of the vectorial observation equations of (21). It

reads _
= Ab+ la
= Ab
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(22)

where A is the time average of A(i), A = Ele A(i). The variance matrices of the time averaged observables ¢
and p are given as kU¢DTD and 02D D.

The reason for studying the time-averaged model is two fold. First, the model is simpler to work with than (21).
Secondly, since the GPS receiver-satellite geometry is known to change slowly with time, the results that hold true
for the time-averaged model should not differ too much from the result that hold true for the model (21), at least
when short observation time spans are involved, such as it is the case with fast ambiguity resolution applications.

The least-squares solution for the ambiguity vector follows from the above model as

o= 16— A(AT(DT D) A) AT (DT D)) (23
Application of the error propagation law, gives the ambiguity variance matrix as
o2
Qa = k;; DTD|I,,_ —%(DTD) LA(AT(DT D)t A)" 1 AT] (24)

Taking the determinant, gives
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The first equality follows, since the determinant of the product of two square and full rank matrices equals the
product of their determinants. For the second equality, we have made use of the fact that | I + PQ |=| I+ QP | for
any two matrices P and @ of appropriate order. As a result we get for the determinant of the ambiguity variance
matrix

2
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Compare this result with that of (10) and note that the only difference between the two results is the power to
2

which the large term (1 4+ Z—g) is taken. In case of the geometry-free model the power equals (m — 1), whereas
é

in case of the time-averaged model, it equals only 3. This is an important difference, since it implies for the
geometry-free model that the large term gets larger when more satellites are tracked, whereas it stays constant
for the time-averaged model. The difference in power between the two expressions, is due to the fact that the
time-averaged model is based on a three dimensional baseline which stays stationary during the observation time
span, whereas the receiver-satellite ranges p(i) of the geometry-free model are not linked in time and thus change
from epoch to epoch. The two results become identical when m = 4, that is, when there is no satellite redundancy
available.

If we rais (25) to the power of ﬁ and recognize that o4 < 0, the generalized ambiguity variance can be
approximated as

2
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Compare this result with that of (11). We now clearly see the benefit of having more than four satellites available
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in case of the time-averaged model. The term mm=—1 (03s /o2)m=1 decreases much faster when m increases (m > 4),

than the term mﬁ, which we had for the geometry-free model.



4.2 Dual frequency case

When the data are available on both of the frequencies, the time- averaged model reads

@1 = f:lb + \ag
¢ = Ab+ Aas
;o= Ab 27)
pa = Ab
The least-squares solution for the ambiguities reads then
ap = %[@ —{1(4 (D*D)~'A)~tAT(D D)‘lﬁw] (28)
iz = 5502 — A(AT(DT D)~ A)TAT(DT D) pu)
where p,, is the time-average of the weighted pseudoranges p,, (7). Application of the error propagation law gives

Qa=Q1®D"D+Qy® AAT(D"D)"A)~t AT (29)

with
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For the determinant of the ambiguity variance matrix, we get
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Compare this result with (19) of the geometry-free model, to see the improvement obtained with the time-averaged
model and compare it to (25) to see the impact of using data on the second frequency. If we assume the phase
data to be equally precise, the code data to be equally precise and recognize that o4 < op, then the generalized
ambiguity variance can be approximated as

2
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5 The geometry-based model

The geometry-based model is the most commonly used model in GPS surveying. When dual frequency data are
available, it reads

?EZ% = EZ;Z + ilal

2(i) = A(i)b+ A2a2

(i) = A()b (32)
p2(i) = A(i)b i=1,...,k

One can expect that the change in receiver-satellite geometry will now also have an impact on the precision of the
least-squares ambiguities. In the geometry-free model this change was absent per se, since the receiver-satellite
geometry was dispensed with and in the time-averaged model it was neutralized, because of the time-averaging of
the observation equations. Due to the change in receiver-satellite geometry, one will now also be able to solve for the
ambiguities when using phase data only. Hence, code data are now not needed per se. We therefore first consider
the phase-only case and then the phase and code case. But before doing so, we will first derive a relation between
the determinant of the ambiguity variance matrix and the determinant of the variance matrix of the baseline.

When we assume the baseline to be known, the variance matrix of the ambiguities becomes a conditional
variance matrix, which reads as

Qap = Qa — Q&i,leQg&



Taking the determinant, after post multiplying with the inverse of the ambiguity variance matrix, gives

| Qaw@{l | = | I- QabQ Qba |
= | I— Qba 1CZabC‘? 1 |
= Q) — Q4@ ' Qap '

In the second equality, we have again made use of the fact that | I + PQ |=| I 4+ QP | for any two matrices P
and @ of appropriate order. In the last equation, we recognize the conditional variance matrix le , which is the
variance matrix of the fixed baseline. As a result, we have the determinantal relation

| Q; |
|Qi)\a|

This equation, which was already introduced in [Teunissen, 1995], is of interest in its own right. The ratio of
determinants of the two baseline variance matrices, the one of the floated solution and the one of the fixed solution,
can be seen to measure the improvement in baseline precision which is reached through the fixing of the ambiguities.
Equation (33) thus shows, through the determinants of the variance matrices, how the precision of the ambiguities
is related to this gain in baseline precision. A higher gain in baseline precision corresponds with a poorer precision
of the ambiguities and a lower gain corresponds with a better precision of the ambiguities. The determinantal
relation (33) can also be used to show how the volume of the ambiguity confidence ellipsoid is related to the ratio
of the volumes of the two baseline confidence ellipsoids.

| Qa | =1Qap | (33)

5.1 Phase-only case

First we will consider the single-frequency case. That is, we will first base our results on either the first set of
observation equations or on the second set of observation equations of (32). We will skip the index, showing whether
it is L1 or Lo that we are dealing with. When we assume the baseline vector to be known, the conditional variance

2
matrix of the least-squares ambiguities, follows as Q4 = ,:%DTD. Hence, its determinant reads

_ Uz m—1 34
|Qa|b|*m(m) (34)
In order to determine the second part of (33), which is the determinant ratio of the baseline variance matrices, we
consider the generalized eigenvalue problem

| Qy—7Qy 1= 0 (35)
The three eigenvalues ;, i = 1,2, 3, are known as the gain numbers. They measure the gain in baseline precision
that is experienced when one fixes the ambiguities. The gain numbers lie in the interval [1,00). There is no gain
in baseline precision, when the gain numbers reach their minimum value of one. In that case the fixing of the
ambiguities would not result in an improved baseline, precision wise. The gain numbers increase in value, when
the observation time span gets shorter and they become infinite, when the observation time span is zero, that is,
when only one observation epoch is used. In that case of course, when use is made of phase data only, also no
floated baseline solution exists. The gain numbers can be shown to follow an inverse square law in the observation
time span T'. Thus v; ~ T2
Apart from measuring the gain in baseline precision, the gain numbers 7; also measure in the phase-only case,
the change the receiver-satellite geometry undergoes when time progresses. The gain numbers can be shown to be
related to the principal angles of the receiver-satellite geometry as ~; = I The canonical theory for single
GPS baselines, which is based on the gain number concept, has been introduced and developed in [Teunissen,
1996b]. Since the gain numbers are the solution of the characteristic equation (35), it follows that

3
H (36)

Substitution of (34) and (36) into (33), gives
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Note that this result indeed shows that the ambiguities can not be solved for, when only a single observation epoch
is used. In that case, the gain numbers become infinite and so does the determinant of the ambiguity variance
matrix. The result also shows the impact of the receiver-satellite geometry. As the observation time span gets
longer, the gain numbers get smaller and hence, the precision of the least- squares ambiguities gets better. When

2
we compare (37) with (25), we note that the two determinants only differ in their factors (1 4+ Z )3 and H 1 Vi
s

This shows that the role of the code data, which is needed per se in the time-averaged model, is taken over by the
change in the receiver-satellite geometry, in case of the phase-only geometry-based model.

Let us now consider the dual-frequency case. The results are now based on using both sets of phase observa-
tion equations of (32). The determinantal ratio of the baseline variance matrices remains unchanged. Only the
determinant of the conditional ambiguity variance matrix changes. Instead of (34), we now have

[ Qap | = [m(352)m P (38)

In the dual-frequency, phase-only case, the determinant of the ambiguity variance matrix thus becomes

g 10 2 m m—
| Qa |= [m(355%) 12H i (eyeles'™Y) (39)

Compare this result with the dual-frequency result (30) of the time-averaged model.

5.2 Phase and code case

Again we start with the single-frequency case. Thus now we are using either the first and third set, or, the second
and fourth set of observation equations of (32). The conditional variance matrix of the ambiguities is in this
case identical to the one of the single-frequency phase-only case. The determinantal ratio of the baseline variance
matrices, changes however. It can still be expressed in the gain numbers 7; however, if we relate the floated and
fixed baseline variance matrices to their counterparts of the single-frequency phase-only case. They are related as
follows

0.2
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where the argument indicates on which type of data they are based. Substitution of these expressions into the
characteristic equation | Q; — 5Ql;‘a |= 0, allows one to relate § to 7,

(L+03/op)y
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(40)

This result shows by how much the gain in baseline precision changes, when single-frequency code data are added
to the single-frequency phase data. Note that the gain in baseline precision when code data are used, is smaller
than when only phase data are used, 6 < . They become identical of course, when o, goes to infinity.

Based on (40), the determinant of the ambiguity variance matrix becomes now

o 3 3 o /O’ Y .
= m ()" 3H1+¢% T (e ) (41)

Compare this result with (25). Note that the two results become identical when the gain numbers 7; go to infinity.
This is understandable, since the gain numbers go to infinity when only one observation epoch is used. In that
case, there is no change in receiver- satellite geometry, just like there is no change in receiver-satellite geometry
taken into account in the time-averaged model.

Let us now consider the dual-frequency case. Thus now we are using all of the four sets of observation equations
of (32). The conditional variance matrix of the ambiguities is in this case identical to the one of the dual-frequency
phase-only case. In order to determine the determinantal ratio of the two baseline variance matrices, we again



express them in terms of their counterparts of the single-frequency, phase-only case,

Q5 =[Qp1,p2) "t +Qp(d1,2) 1T, Qplprpe) = %Qaa(%) Qo1 02) p(01)
Qi = [Q4(p1.p) ™" + Q01,6217 L Qpu(0r.6) = TQy,(00)
Substitution of these expressions into | Q; — te;‘a |= 0, allows one to relate € to 7,
(1+ azw /02w )y (42)
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Compare this with (40). This result shows by how much the gain in baseline precision changes, when dual-frequency
phase and code data are used instead of only single-frequency phase and code data. The two expressions become
identical in case the precision of the Ly data is equal to that of the Lo data. Based on (42), the determinant of the
ambiguity variance matrix becomes now

U¢ /o; o, )i

——w Wl cycles*(m—1) 43
e ) (43)

kX1 A2

04,0, m— w
| Qa | = [m( é1 ¢2) 1] 1+0P 3H
¢ i=1

w

Compare this result with its counterpart (30) of the time- averaged model. Note that it clearly shows the presence
and impact of all relevant parameters. It shows the number of satellites tracked (m), the number of observation
epochs used (k) and the change in the receiver-satellite geometry which is experienced, (7;). And through the
square of the first term in (43), it shows the impact of using dual-frequency data, and through the third power of
the second term in (43), it shows the impact of having a stationary baseline.

6 Summary

In this contribution we have derived closed form expressions for the determinants of the ambiguity variance matrices.
This has been done for the three single baseline models: the geometry-free model, the time- averaged model and
the geometry-based model. In order to have an easy reference, the results are summarized in table 1. These closed
form expressions give an indepth understanding of the various factors that contribute to the determination of the
precision of the least-squares ambiguities. These factors are: (1) data redundancy, i.e. the use of single-frequency
data versus dual-frequency data, and the use of phase- only data or phase and code data; (2) satellite redundancy,
it equals (m — 2) in case of the geometry-free model and (m — 4) in case of the time-averaged model and the
geometry-based model; (3) number of observation epochs k; and (4) change in receiver-satellite geometry, which is
measured through the gain numbers ;.

Since the determinant is invariant against volume preserving transformations, the determinants of the ambi-
guity variance matrices are also invariant to any admissible ambiguity transformation possible. The closed form
expressions derived, therefore also hold true for the decorrelated ambiguities which are obtained with the LAMBDA
method. Hence, instead of the trace for instance, the given expressions for the determinants truely measure the
intrinsic precision of the ambiguities.

The closed form expressions also provide for an easy way of computing the volume of the various ambiguity
search spaces. And since the volume is a good indicator for the number of grid points that are located in the
ambiguity search space, it can be used to down size the search space, such that an abundance of unnecessary grid
points is avoided.
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[TQa ] [ GEOMETRY-FREE (m > 2) | TIME-AVERAGED (m >4) | GEOMETRY-BASED (m > 4)
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Table 1: The determinants of the single and dual frequency ambiguity variance matrices, for the geometry-free
model, the time-averaged model and the geometry-based model.
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