
BIOGRAPHY 
 
Dr. Chansik Park is associate professor of school of 
electrical and computer engineering. His interests include 
the development of GNSS receivers and data processing 
techniques. Dr. Peter Teunissen is professor of MGP 
(Mathematical Geodesy and Positioning), Delft University 
of Technology. He is currently engaged in the development 
of GNSS data processing strategies for medium scaled 
networks with an emphasis on carrier phase ambiguity 
estimation and validation. They have interest in carrier 
phase ambiguity resolution in GNSS attitude determination 
system. 
 
 
ABSTRACT 
 
In this paper, the results of a new method to fix integer 
ambiguity in the attitude determination are presented.  
The results are obtained by means of a novel LAMBDA 
based method of making use of all a priori information 
on the baseline configuration The LAMBDA based 
method is mathematically rigorous and compact. It 
dramatically improves the success rate of an integer 
ambiguity resolution and therefore improves the 
reliability of attitude determination systems. It is 
expected that ourmethod can be directly used to build 
precise and reliable attitude determination systems with 
off-the-shelf low cost GNSS receivers. 
 
 
1. INTRODUCTION 
 
Carrier phase measurements from more than two 
antennas and an integer ambiguity resolution method are 
used to get precise attitudes such as roll, pitch and yaw. 
Integer ambiguity resolution method in attitude 
determination needs to be highly optimized to meet the 
real time navigation requirement. Many researches on 
attitude determination systems using GNSS (Global 
Navigation Satellite System) have been done and there 
are commercial products already [Ashtech03], 
[Furuno03]. But, in these systems the probability of 

correct integer estimation is not high enough and there 
are still strong requirements of integer ambiguity 
resolution methods which have high success rates. 
 
The LAMBDA (Least squares AMBiguity Decorrelation 
Adjustment) method [Teunissen93], [Teunissen94], 
[Teunissen98a] is one of the most famous integer 
ambiguity resolution method and many systems has been 
implemented using it. The LAMBDA method is 
basically an ILS (Integer Least Squares) estimator and 
provides an optimal solution with high reliability and 
efficiency. However, to apply the LAMBDA method to 
attitude determinations, some modifications are required 
so as to make use of all a priori available information to 
improve performances. Some other methods using the 
baseline length in validation or including the baseline 
length into the model can be used as alternatives. 
However, these methods are not rigorous and it is hard to 
determine critical thresholds.  
 
Other methods such as LSAST (Least Squares 
Ambiguity Search Technique) and ARCE (Ambiguity 
Search using Constraint Equation) divide integer 
ambiguities into independent and dependent parts and 
perform search using an independent part only. 
Furthermore, using the constant baseline length 
constraints, the search space can be further reduced. 
Because of computational efficiency, these methods are 
popular. But, there is no theoretic guideline to divide 
independent and dependent parts, and to choose the 
threshold for a thickness of a search sphere which is 
critical to the performance. 
 
In this paper the results of the LAMBDA based method 
for attitude determination are presented The method is 
implemented using MATLAB and applied to real 
measurements. Experimental results with various GPS 
receivers show the effectiveness of the proposed method. 
 
In section 2 we give a brief review of GNSS model and 
attitude determination methods. In section 3, after a brief 
introduction of the ILS problem, the LAMBDA method 
is explained. Some ambiguity resolution methods in 
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attitude determination are briefly introduced in section 4. 
The experimental results and analysis with various real 
measurements are given in section 5 . In final section, 
some concluding remarks are given. 
 
 
2. ATTITUDE DETERMIANTION USING GNSS 
 
2.1 The GNSS model 
We will consider the following system of linear(ized) 
observation equations 
 
(1) y Aa Bb e= + +   
 
where y is the given GNSS data vector of order m, a and 
b are the unknown parameter vectors respectively of 
order n and p and where e is the noise vector. In principle 
all the GNSS models can be cast in this frame of 
observation equations. The data vector y will usually 
consist of the 'observed minus computed' single or dual 
frequency double difference (DD) carrier phase and/or 
pseudorange (code) observations. The entries of vector a 
are then the DD carrier phase ambiguities, expressed in 
units of cycles rather than range. They are known to be 
integers, a∈Zn. The entries of vector b will consist of 
baseline components (coordinates) and possibly 
atmospheric delay parameters. They are known to be real 
valued, b∈Rn. In attitude determination system, usually 
the baseline length is short enough to neglect the effect 
of atmospheric delay. Furthermore, to meet the real time 
requirement single epoch's measurements are considered 
which results in p=3. 
 
The procedure which is usually followed for solving the 
GNSS model (1) can be divided into three steps. In the 
first step one simply disregards the integer constraints 
a∈Zn  on the ambiguities and performs a standard least-
squares adjustment. As a result one obtains the (real 
valued) estimates of a and b, together with their 
variance-covariance (vc-) matrix 
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This solution is referred to as the 'float' solution. In the 
second step the 'float' ambiguity estimate a

�
 is used to 

compute the corresponding integer ambiguity estimate a
�

. 
This implies that a mapping S:Rn→→→→Zn, from the n-
dimensional space of reals to the n-dimensional space of 
integers, is introduced such that 
 
(3) ( )a S a=� �

 

 
Once the integer ambiguities are computed, they used in 
the third step to finally correct the 'float' estimate of b. 

As a result one obtains the 'fixed' solution 
 

(4) 1( )aba
b b Q Q a a−= − −� ��

� � � �
 

 
with vc-matrix 1

ab b ba ab
Q Q Q Q Q−= −� � � ��� � . 

 
In the present contribution we will show how the above 
procedure needs to be modified in case of attitude 
determination systems after a brief description of the 
attitude determination procedure. 
 
 
2.2 Attitude determination 
 
Attitudes of a vehicle can be determined using GNSS 
measurements from more than two antennas attached to a 
vehicle [Ashtech03], [Cohen92], [Lu95], [Park00], 
[Ziebart03]. The fixed baseline vector in (4) is expressed 
in the ECEF (Earth Centred Earth Fixed) frame. The 

baseline vector in the local level navigation frame, nb
�

, is 
obtained by transforming the fixed baseline in the ECEF 

frame. By comparing nb
�

 with a known baseline vector 
in the body frame, and by using the assumption that a 
vehicle is rigid body, attitudes can be estimated. The 

baseline vector in the body fame, bb
�

, can be precisely 
measured at the antenna installation time. The baseline 
vectors in the two coordinate systems are related as 
follows: 
 

(5) b nb C C C bφ θ ψ=
� �

 

 
where Cψ  represents a rotation about the vertical axis 

(heading), Cθ  represents a rotation about the horizontal 

plane (elevation or pitch) and Cφ  represents a rotation 

about the axis parallel to a forward direction (roll). The 
transformation matrix b

nC C C Cφ θ ψ=  is a 3×3 matrix 

containing the nine direction cosine elements or three 
Euler angles ( ,φ θ  and ψ ). 

 
If there are an  antennas (or an -1 baselines) are attached 

to a vehicle the transformation matrix or attitudes can be 
determined using  
 

(6) b b n
nB C B=

� �
 

 

where the matrix 1 1a

T
b b b

nB b b −� �= � �
� ��

�  and 

1 1a

T
n n n

nB b b −� �= � �
� ��

� . A simple least squares or 

optimization techniques [Bar97] can be applied to (6) to 
determine the transformation matrix, b

nC , or attitudes if 

there are more than 3 antennas not in coplanar. 



 
In the GPS compass type attitude determination systems 
[Furuno03] [Tu96], only one baseline vector is used to 
determine heading and elevation. Thus (6) can not be 
directly applied. Another method called 'direct method' is 
usually used in this case. Let one antenna is located at 

the centre of vehicle [ ]0 0 0
T

, and the other is at 

[ ]0 0
T

L  in the body frame. Let the computed 

baseline using the GNSS be expressed as 
Tn n n nb x y z� �= � �

� � � �
. The heading and elevation can be 

determined using 
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In this contribution, attitude determination using GPS 
compass is considered since it is a basic building block 
of attitude determination systems. 
 
 
3. AMBIGUITY RESOLUTION 
 
3.1 THE LAMBDA method 
 
There are many ways of computing an integer ambiguity 
vector a

�
 from its real-valued counterpart a

�
. Integer 

rounding, integer bootstrapping and ILS are examples of 
the admissible integer estimation. Having the problem of 
GNSS ambiguity resolution in mind, one is particularly 
interested in the estimator which maximizes the 
probability of correct integer estimation. 
 
When using the least-squares principle, the GNSS model 
(1) can be solved by means of the minimization problem 
 

(9) 
2

,
min , ,

y

n p

Qa b
y Aa Bb a Z b R− − ∈ ∈  

 
with yQ  the vc-matrix of the GNSS observables. This 

type of least squares problem was first introduced in 
[Teunissen93] and has been coined with the 
term ’ integer least-squares’ . It is a nonstandard least-
squares problem due to the integer constraints na Z∈ . 
The solution of (9) is consistent with the three solution 
steps of section 2.1. This can be seen as follows. It 
follows from the orthogonal decomposition 
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with e y Aa Bb= − −
�� �

 and 1( ) ( )aba
b a b Q Q a a−= − −� ��

� � �
, that 

the sought for minimum is obtained when the second 
term on the right-hand side is minimized for na Z∈  and 
the last term is set to zero. The integer least-squares 
(ILS) estimator of the ambiguities is therefore defined as 
follows. 
 
Definition 1 (Integer least-squares) 

Let ( )1

T T
na a a R= ∈� � �

�  be the ambiguity ’ float’  

solution and let n
LSa Z∈�

 denote the corresponding 

integer least-squares solution. Then 
 

(11) 
2

argmin
an

LS Q
z Z

a a z
∈

= −
�
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In contrast to integer rounding and integer bootstrapping, 
an integer search is needed to compute LSa

�
. Although 

we will refrain from discussing the computational 
intricacies of ILS estimation, the conceptual steps of the 
computational procedure will be described briefly. The 
ILS procedure is mechanized in the GNSS LAMBDA 
(Least-squares AMBiguity Decorrelation Adjustment) 
method, which is currently one of the most applied 
methods for GNSS carrier phase ambiguity resolution. 
More information and practical results on the LAMBDA 
methods can be found, for example, in [Hatch94], 
[Jonge96], [Joosten01], [Teunissen93], [Teunissen94], 
[Teunissen98a], [Teunissen98b], [Teunissen01], 
[Teunissen02], [Tiberius98] and [Verhagen02]. 
 
The main steps as implemented in the LAMBDA method 
are as follows. One starts by defining the ambiguity 
search space 
 

(12) { }1 2| ( ) ( )n T
a aa Z a a Q a a χ−Ω = ∈ − − ≤�

� �
 

 
with 2χ  a to be chosen positive constant. The boundary 

of this search space is ellipsoidal. It is centred at a
�

, its 
shape is governed by the vc-matrix aQ�  and its size is 

determined by 2χ . In case of GNSS, the search space is 

usually extremely elongated, due to the high correlations 
between the ambiguities. Since this extreme elongation 
usually hinders the computational efficiency of the 
search, the search space is first transformed to a more 
spherical shape, 
 

(13) { }1 2| ( ) ( )n T
z zz Z z z Q z z χ−Ω = ∈ − − ≤�

� �
 

 
using the admissible ambiguity transformations Tz Z a= �� , 

T
z aQ Z Q Z= �� . Ambiguity transformations Z are said to 

be admissible when both Z and its inverse 1Z−  have 
integer entries. Such matrices preserve the integer nature 
of the ambiguities. In order for the transformed search 
space to become more spherical, the volume preserving 



Z-transformation is constructed as a transformation that 
decorrelates the ambiguities as much as possible. Using 
the triangular decomposition of zQ� , the left-hand side of 

the quadratic inequality in (13) is then written as a sum-
of-squares: 
 

(14) 
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1 |
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On the left-hand side one recognizes the conditional 
least-squares estimator |ˆi Iz , which follows when the 

conditioning takes place on the integers 1 2 1, , , nz z z −� . 

Using the sum-of-squares structure, one can finally set 
up the n intervals which are used for the search. These 
sequential intervals are given as 
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In order for the search to be efficient, one not only would 
like the vc- matrix zQ�  to be as close as possible to a 

diagonal matrix, but also that the search space does not 
contain too many integer grid points. This requires the 
choice of a small value for 2χ , but one that still 

guarantees that the search space contains at least one 
integer grid point. Since the bootstrapped estimator is so 
easy to compute and at the same time gives a good 
approximation to the ILS estimator, the bootstrapped 
solution is an excellent candidate for setting the size of 
the ambiguity search space. Following the decorrelation 
step Tz Z a= �� , the LAMBDA-method therefore uses, as 
one of its options, the bootstrapped solution Bz

�
 for 

setting the size of the ambiguity search space as 
 
(16) 2 1( ) ( )T

B z Bz z Q z zχ −= − −�
� � � �  

 
In this way one can work with a very small search space 
and still guarantee that the sought for integer least-
squares solution is contained in it. 
 
 
3.2 The ILS success rate 
 
The estimation procedure will always result in integer 
values for the phase ambiguities. These values, however, 
will not always be correct. A simple measure to predict 
the probability of estimating the unknown phase 
ambiguities at their correct values is called the success-
rate, introduced in [Teunissen02]. This is a single 
number between 0 and 1 (or 0% and 100%). It is a design 
measure, which means that actual observations are not 

needed to compute this number. As the success-rate is 
the probability of correct integer ambiguity estimation, it 
equals the probability that the estimated float ambiguities 
will be mapped onto the correct integers. The actual 
ambiguity success-rate depends on three contributing 
factors: the observation equations (functional model), the 
precision of the observables (the stochastic model), and 
the chosen method of integer estimation. Changes in any 
one of these will affect the success-rate. The first two 
contributing factors reflect the strength of the data model 
and they are known once the measurement set-up is 
known. As to the method of integer estimation, a variety 
of options is available. Since different methods of integer 
estimation will generally result in different success-rates, 
one might wish to use the method that maximizes the 
success-rate. It has been proven  that the integer least-
squares estimator has the largest success-rate of all 
admissible integer estimators. The success-rate of the 
LAMBDA method is therefore larger than, or at least as 
large as any other integer ambiguity estimator. No 
analytical expressions are available for the integer least 
squares ambiguity success-rate. However, in  a lower 
bound for the success-rate is given, based on integer 
bootstrapping. The expression for the lowerbound of the 
ambiguity success-rate reads 
 

(17) 
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1
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with the integration of the Gaussian probability density 
function 

(18) 21 1
( ) exp( )

22

x
x z dz

π−∞
Φ = −�  

 
The standard deviation 

|ˆi Izσ  is the square root of the 

conditional variance of the i th ambiguity (conditioned on 
the previous 1, , 1I i= −�  ambiguities). It can be 
obtained from the diagonal matrix D after an LDLT 
decomposition of the matrix zQ� . The success rate should 

be sufficiently high, i.e. very close to one, in order to 
guarantee that the ambiguity will be fixed to the correct 
values. 
 
It should be noted that this lower bound depends on the 
parametrization of the ambiguities. If computed for the 
LAMBDA-decorrelated ambiguities, it is a tight lower 
bound, i.e., the success-rate for integer bootstrapping is 
very close to the integer least squares success-rate. The 
ambiguity success-rate can be evaluated once the GNSS 
functional and stochastic models are known. Similar to 
the usage of Dilution Of Precision (DOP) measures, it 
can be computed without having the actual 
measurements available, thus prior to actual field 
operation. By means of the success-rate the user is given 
a rigorous way of assessing how often he or she can 
expect ambiguity resolution to be successful. 



 
 
4. INTEGER AMBIGUITY RESOLUTION IN 

ATTITUDE DETERMINATION SYSTEMS 
 
The baseline length constraint, b = � , can be expressed 

also as 
 

(19) 
2 2

I
b = �  

 
where �  is the known baseline length and I is (3×3) 
identity matrix.  
 
There may be many approaches to handle this constraint. 
The easiest one is applying constraint in validation 
phased. Because a vehicle is assumed as rigid body, the 

length of fixed baseline vector ( )b a
�

 should satisfies 

 

(20) ˆ( )b aδ δ− ≤ ≤ +� � � �  

 
with very small δ � . For all candidates in the search 
space, baseline lengths are computed and compared with 
predefined threshold δ � . If a baseline length is not in 
tolerable region, the ambiguity candidates a is rejected. It 
is not easy to define reliable δ � . Because of noise, 
sometimes true a may be rejected with small δ �  while 
big δ �  has no effects. It is simple method but it requires 

more computational power because ( )b a
�

 should be 

computed for every candidates. Sometimes validation 
procedure is applied to the first N small candidates in 

aΩ  to reduce computations. 

 
In other approaches like LSAST [Hatch94] and ARCE 
[Park96, Park97], integer ambiguity vector is divided 
into independent and dependent parts as  
 

(21) [ ]T

I Da a a=  

 
where 3

Ia Z∈  and 3n
Da Z −∈ . Let carrier phase 

measurements are precise enough then we can assume 
 

(22) 1( ) ( )I I I I Ib a H l aλ−= − ≈
�

� . 

 
It implies that not n-dimensional but 3-dimensional 
search can be applied to ambiguity resolution. 
Furthermore, if b = �  is added as pseudo-measurement, 

it becomes 2-dimensional search. In other words, 
candidates on the surface of sphere are searched. It 
provides computational efficiency, however, because of 

noise, ( )I Ib a =
�

�  is not valid and also pseudo-

measurement b = �  is not valid. Therefore, boundary 

( )I Ib aδ δ− ≤ ≤ +
�

� � � �  is adopted. The size of search 

space increases for longer baseline since the surface of 
sphere is larger. It is not easy to determine δ �  and there 
is no theoretic guide to divide Ia  and Da . 

 
Not only known baseline lengths but also configuration 
of baselines can be utilized in the modified LAMBDA. 
This can be done by expanding the existing ILS problem 
with the information. The LAMBDA method is modified 
in order to make use of all a priori available information. 
 
 
5. EXPERIMENTAL RESULTS 
 
5.1 Short rotating baseline 
 
Total of 2100 epochs measurements from two NovAtel 
12 channels single frequency C/A code GPS receivers 
are used to evaluate the performance of heuristic 
methods. It is assumed that true attitudes and integer 
ambiguity vector are known. The attitude obtained using 
the integer ambiguity vector gives consistent result or a 
long times so that it is considered as a true integer 
ambiguity vector. Experimental success rates are 
computed by comparing the true integer ambiguity 
vector and an obtained integer ambiguity vector at every 
epoch. Baseline length is 40cm and it starts rotations in 
the horizontal plane using a stepping motor after 1000 
epochs. 
 
Table 1 summarized experimental results. In table 
LAMBDA means the original Lambda method which 
does not consider baseline length is used. In this case, it 
is not surprising that the success rate is very poor. 
LAMBDA+VALIDATION means that validation 

procedure using ( )b aδ δ− ≤ ≤ +
�

� � � �  is added to the 

original Lambda method. By adding this validation 
procedure, some improvement in success rate is achieved. 
ARCE gives much more performance improvements. 
Because of measurement noise and uncertainties in true 
baseline length, there are 90 failed epochs where the 
baseline lengths with true integer ambiguity are out of 
search space. The modified LAMBDA method gives 
dramatic improvement. It gives 100% success rate which 
is almost double of the original Lambda method. 
 
Fig. 1 shows the number of satellites, PDOP during the 
experiment, and experimental and theoretic success rates 
computed at every epoch. The average of theoretic 
success rate is 92.8%. It is around 90% when there are 8 
satellites but it suddenly decreases to less than 70% when 
number of satellites drops to 7. In the figure, the red dots 
will indicate failure epochs but because we have 100% 
success rate with the proposed method there are no red 



dots. 
 
Fig. 2 show obtained heading, pitch (elevation) and 
baseline length. Blue line indicates attitude using floating 
ambiguity while red line is obtained using fixed 
ambiguity. Figure also represents horizontal trajectory 
with floating and fixed ambiguity. The reference antenna 
is represented by a circle at (0,0) point. These figures 
clearly show why ambiguity resolutions are required. 
Figures explain movements of the baseline: it stayed at 
first 1000 epochs and then it starts rotation. Obtained 
pitches reveal the baseline is not well leveled and it 
oscillates as rotations of the baseline. For the first 1000 
static epochs, the mean of heading, pitch and length are 
49.6511deg, -0.7037deg and 0.4025m. The standard 
deviation of heading, pitch and length are 0.2899deg, 
0.5533deg and 0.0019m, respectively. These results are 
exactly consistent with the analysis in [Park00]. 
 
 

Table 1. Experimental success rate [40cm baseline] 
Method Success Rate 

LAMBDA 51.1% (1073/2100) 
LAMBDA+VALIDATION 78.7% (1653/2100) 
ARCE 95.7% (2010/2100) 
LAMBDA MODIFIED 100% (2100/2100) 
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(a) No Sat and PDOP  (b) Success Rate 

Fig. 1 Number of satellites, PDOP and Success Rates 
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(a) headings    (b) elevations 
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(c) baseline lengths     (d) horizontal trajectories 

Fig. 2 Floating and fixed attitudes 

 
5.2 Van test with 2.5m baseline 
 
The stack of data collected at December 22, 1996 with 
Trimble 4000 SSI Geodetic Surveyor receivers in the 
Flevo-polder [Tiberius98] are re-invited for attitude 
determination processing. Measurements from two 
receivers (Stations 38 and 39 with distance of 2.563m) 
installed on a van is used to obtain attitudes. Test starts at 
08:10 and lasts for an hour. Among 3600 epoch’s data, 4 
epoch measurements are removed because of cycle slips.  
To compare the performance, gathered measurements are 
processed in two ways, i) single frequency and ii) dual 
frequency measurements. 
 
Numbers of satellites, PDOP and success rate using 
single frequency processing are shown in Fig. 3. The 
average of theoretic success rate is 73.95% while the 
experimental success rate is obtained as 98.53% (3543 
success / 3596 trials). In Fig. 4, numbers of satellites, 
PDOP and success rate using dual frequency processing 
are shown. Average number of satellites for L2 is 7.3184 
and for sum of L1 and L2 are 14.6813. The average of 
theoretic success rate becomes 99.9997% as numbers of 
satellites increase, and the experimental success rate is 
obtained as 100%. That is, using the modified LAMBDA 
method, integer ambiguities are always found. 
 
The horizontal trajectories in Fig. 5 clearly show the 
relative trajectories of two antennas. The reference 
antenna is located at the center of figure while the rover 
antenna’s locations are given on the circle. It reflects the 
test driving that a 10 km stretch on a dike has been traveled 
forth and back with a few minutes of measurements taken 
stationary at the start, the turning-point and at the end. 
 
Fig. 6 show floating and fixed attitudes of a van. 
Determined headings clearly show when the van takes 
turns. And determined pitch shows how turns are done. 
The van is slanted when it turns. It also can be clearly 
distinguished that an integer ambiguity is correctly 
resolved or not by seeing pitches or horizontal 
trajectories obtained using fixed integer ambiguity. 
Because an integer ambiguity which gives a position on 
the surface of a sphere with radius of baseline length is 
found in the ambiguity resolution, it is easy to check the 
correctness of obtained attitudes. However, in this paper, 
it is not applied yet since the purpose of this research is 
on the integer ambiguity resolution itself. 
 
Furthermore, it is interesting to note that using the 
determined pitches it can be possible to distinguish 
stationary and moving operations. According to the log 
[Tiberius98], the van was in static modes for intervals of 
(0 - 180), (708 - 888) and (3290 - 3599). The deviation 
of pitch during the stationary operation is much less than 
that of moving. 
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(a) No Sat and PDOP  (b) Success Rate 

Fig. 3 Number of satellites, PDOP and Success Rates 
(Single Frequency) 
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Fig. 4 Number of satellites, PDOP and Success Rates 
(Dual Frequency) 
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Fig. 5 Horizontal trajectories with fixed ambiguities 
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Fig. 6 Floating and fixed attitudes (Dual Frequency) 
 
 
 
6. CONCLUSIONS 
 
In this paper the results of a novel LAMBDA based 
method for attitude determination are presented. The 
modified LAMBDA method makes use of all available 
information for attitude determination. Compared to 
other methods such as heuristic validation method or 
ARCE, the LAMBDA based method is mathematically 
rigorous and compact. Experimental results with real 
measurements show that it dramatically improves the 

success rate of integer ambiguity resolution and therefore 
improves the reliability of attitude determination systems.  
 
It is expected that our method can be directly used to 
build precise and reliable attitude determination systems 
with off-the-shelf low cost GNSS receivers. 
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