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Summary
Although leveling is a very precise technique for geodetic
deformation monitoring, it is quite expensive and time-
consuming. InSAR is a relatively new technique for precise
deformation monitoring and has some important advantages
compared to leveling: the high spatial resolution of the data
and the relatively low costs of the technique. In this arti-
cle both techniques are considered for the estimation of sub-
sidence due to gas extraction. Simulations demonstrate that
although InSAR has the capability to provide sub-cm accu-
racy for this type of deformation monitoring, an integration
with leveling is the best choice as long as InSAR is not at a
fully reliable level.

Zusammenfassung
Das klassische Nivellement zur geodätischen Überwachung
von Deformationen ist mit hohen Kosten und gros̈em Zeitauf-
wand verbunden. Bei InSAR handelt es sich dagegen um eine
relativ neue Technik, die im Vergleich mit dem Nivellement als
Vorteil insbesondere eine sehr hohe räumliche Auflösung bei
relativ geringen Kosten bietet. In diesem Aufsatz werden beide
Techniken für die Analyse von Bodensenkungen in Folge von
Gasextraktion im Bereich des Groninger Gasfeldes betrach-
tet. Anhand von Simulationsrechnungen lässt sich zeigen, dass
eine Integration von InSAR und Nivellement der beste Weg
ist, obwohl InSAR im Prinzip bereits Deformationsanalysen mit
sub-cm Genauigkeit ermöglicht.

1 Introduction

Due to its situation below sealevel, the monitoring of land
subsidence is an important issue in the Netherlands. In
the northeast, the exploitation of the large Groningen
gas field and its smaller adjacent fields has resulted in
smooth subsidence bowls up to several kilometers in di-
ameter with a velocity of typically one centimeter per
year. Since the beginning of gas production in the 1960s
spirit leveling surveys have been carried out on a reg-
ular basis. Although this technique allows for the de-
tection of very small surface deformations, it is rather
time-consuming and thus expensive. The introduction of
space-geodetic techniques like GPS and the interferomet-
ric use of Synthetic Aperture Radar (InSAR) has offered
new opportunities for precise deformation monitoring. In
particular, using the InSAR technique at relatively low
costs (when compared to leveling) relatively large sub-
sidence areas can be monitored. InSAR provides vertical
displacements between coherent points in two SAR acqui-
sitions (images). Additional benefits of InSAR are that it

is not necessary to physically access the deformation area
and the high spatial and temporal density of the data.
Besides, sub-centimeter accuracy has been reported for
InSAR-derived surface deformations, see e. g. Massonnet
and Feigl (1998).

In this article it is investigated to what extent an inte-
gration of leveling observations and vertical displacement
data derived from InSAR results in a more efficient defor-
mation monitoring system than based on leveling data
only. GPS-derived vertical displacements are not consid-
ered here because of their lower spatial density compared
to InSAR. Simulations have been carried out to study the
performance of an integration of leveling and InSAR ver-
tical displacement data for subsidence estimation. Aspects
that play a role in these design computations are the spa-
tial and temporal density of the leveling and InSAR net-
works, in combination with the assumptions concerning
the stochastic properties of the observations. Before dis-
cussing these simulations, in the next sections an exten-
sive overview is provided of the procedure we applied for
the mathematical modeling of land subsidence due to gas
extraction.

2 A spatio-temporal model for land subsidence

The developed procedure for the monitoring in gas field
areas is based on a spatio-temporal modeling of the sub-
sidence. This section describes this modeling in detail.

2.1 Vertical deformations in gas field areas

In this paper we consider slow-term land subsidence due
to gas extraction, which ranges from a few millimeters up
to a few centimeters a year. However, a point in such a
subsidence area may also be subject to movements due to
other causes (not due to gas extraction). In presence of all
kinds of deformations, the height of a point i at time t,
denoted as Hi,t can be written as the following function
(Kenselaar and Quadvlieg 2001):

Hi,t = Hi,t0 + g
i,t−t0

+ ηi,t, (1)

where t0 denotes the start time of the deformation, Hi,t0
the height of the point before or at the beginning of de-
formation (»initial« height), gi,t−t0 the motion of the point
due to gas extraction, and ηi,t the motions of the point
that are not caused by gas extraction. Motions not caused
by gas extraction are usually due to local effects (for ex-
ample ground water variations).
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The underscore in Eq. (1) emphasizes the stochastic na-
ture of a variable. The deformation due to gas extraction,
i. e. g

i,t−t0
, is assumed as a stochastic process, since in

practice it is usually impossible to completely model it by
a deterministic function. In Sect. 2.2 this so-called trend-
signal modeling is discussed in detail. The deformation
of the points that is not caused by gas extraction, ηi,t in
Eq. (1), is also assumed as a stochastic process. Suppose
that we have two epochs, denoted as tl and tm, then the
following covariance function is used to describe the tem-
poral behavior of local point instabilities:

σηi,tl
ηi,tm

= σ2
bi
(min[tl , tm]− t1), (2)

where min[·, ·] denotes the minimum operator, t1 the first
epoch at which the measurements are obtained and σbi
a point-specific standard deviation (also referred to as
point noise). From Eq. (2) note that the point instabili-
ties are allowed to become larger with time. In fact, they
are modeled as a random-walk process. These point insta-
bilities are uncorrelated in space assumed.

2.2 Modeling deformations due to gas extraction

In our procedure for subsidence estimation the vertical
deformation due to gas extraction is decomposed into a
deterministic trend, denoted as z, plus a stochastic signal,
denoted as ξ:

g
i,t−t0

= zi,t−t0 + ξ i,t−t0
. (3)

The purpose of the estimation procedure is to solve for
this sum of trend and signal. For the application of slow-
term subsidence in gas field areas spatiotemporal models
have proven to be valid for both trend and signal.

2.2.1 Modeling the deformation trend

It is known that subsidence of the surface above deep
gas reservoirs shows strong coherence, both in space
and time. In among others (Houtenbos 2000) it was
shown that for the deformation trend therefore smooth
7-parameter spatiotemporal subsidence bowls can be ap-
plied. In this paper we adopt this method. The subsidence
trend is modeled as a superposition of nB bowls, in which
the center of each bowl subsides with an unknown but
constant velocity. In addition, it is assumed that this sub-
sidence velocity exponentially decreases with increasing
distance from the center of the bowl. Mathematically, we
may then write the trend zi,t−t0 in Eq. (3) as:

zi,t−t0 =
nB

∑
B=1

zi,t−t0,B , where zi,t−t0,B

=
{

0 for t ≤ t0,B
vB(t − t0,B) exp{− 1

2 r2
i,B} for t ≥ t0,B

, (4)

where t0,B denotes the start time of subsidence of bowl
B, vB the subsidence velocity in the center of this bowl,

and ri,B the standardized radius from the center of this
bowl to point i. The subsidence velocity at point i can
be computed as vB exp{− 1

2 r2
i,B}. It is assumed that each

bowl has an ellipsoidal shape in the horizontal plane, such
that the standardized radius can be written as follows:

r2
i,B =

(
(xi−xc,B) sinφB+(yi−yc,B) cosφB

aB

)2

+
(

(xi−xc,B) cosφB−(yi−yc,B) sinφB

bB

)2

, (5)

where (xi , yi) denote the (known) horizontal coordinates
of point i, (xc,B, yc,B) the coordinates of the center of
bowl B, (aB, bB) the half long respectively half short axes
of this bowl, and φB the argument of the long axis of this
bowl. To recover the deformation trend we need to deter-
mine seven parameters for each bowl: the two temporal
parameters vB and t0,B, plus the five spatial parameters
(xc,B, yc,B), aB, bB and φB.

2.2.2 Modeling the deformation signal

Unfortunately, for many gas fields it is not possible to
describe the land subsidence due to gas extraction us-
ing only the trend model. For example, for the large and
complex Groningen gas field in the Netherlands a deter-
ministic trend only turns out to be insufficient (Houten-
bos 2000). Hence, the signal term ξi,t−t0 in Eq. (3) ac-
counts for the imperfection of the adopted trend model
with respect to the actual land subsidence. This term is
also referred to as model noise, see e. g. Kenselaar and
Quadvlieg (2001). In our procedure these discrepancies
are modeled as a stochastic process with both temporal
and spatial components. Conform Houtenbos (2000) it is
assumed that in the temporal domain the signal can be
described by a random-walk process, while in the spa-
tial domain it can be modeled by a Gaussian covariance
function, this latter function is an exponential depending
on the squared distance between points, see e. g. Wacker-
nagel (1998). Suppose we have two points, denoted as i
and j, and two epochs, denoted as tl and tm, then the co-
variance between the signal at point i at epoch tl and the
signal at point j at epoch tm is modeled as:

σξi,tl
ξ j,tm

= σ2
g (min[tl , tm] − t1) exp{− (

li j/Lg
)2}. (6)

In this covariance function σg denotes the standard de-
viation of the signal, t1 the first measurement epoch, li j
the horizontal distance between points i and j and Lg the
correlation distance of the signal.

3 Observation equations

To estimate subsidence by means of the trend-signal
model, in this section it will be connected to two types
of observations: spirit leveling measurements and verti-
cal displacements as derived from modern space-geodetic
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techniques like InSAR or GPS. This section deals with
their observation equations.

3.1 Leveling data

In case of conventional leveling, an observed height dif-
ference between two points i and j on epoch t, denoted as
wi j,t, can be written as:

wi j,t = −Hi,t + H j,t +εw
i j,t, (7)

where Hi,t denotes the height of point i at time t and
H j,t the height of point j at time t. Random measure-
ment errors are contained in the term εw

i j,t. By inserting
Eq. (1) into Eq. (7), we may rewrite the observation equa-
tion as function of initial heights, vertical deformations
and a term due to noise:

lllwi j,t = −Hi,t0 + Hj,t0 − g
i,t−t0

+ g
j,t−t0

−ηi,t + η j,t +εw
i j,t. (8)

Decomposing the vertical deformation due to gas extrac-
tion into a trend and signal term, see Eq. (3), we obtain:

lllwi j,t = −Hi,t0 + Hj,t0 − zi,t−t0 + z j,t−t0

−ξ i,t−t0
+ξ j,t−t0

− ηi,t + η j,t +εw
i j,t︸ ︷︷ ︸

ew
i j,t

, (9)

where all stochastic terms, i. e. the deformation signal (ξ),
point noise (η) and measurement noise (ε) are collected
in one random error term, denoted as ew

i j,t. Note that since
the mathematical expectation of all three individual com-
ponents is zero, also the combined noise term has zero
expectation. A common assumption for the measurement
noise of leveling data is to assume them normally (Gaus-
sian) distributed and uncorrelated, both in space and time.
The measurement noise of a leveling observation is pro-
portional to the length of the measured trajectory, de-
noted as si j:

σ2
εw

i j,t
= σ2

wt
si j. (10)

In case of precise leveling data, the standard deviation is
usually within the interval 0.5 < σwt < 1 mm/

√
km.

3.2 Vertical displacement data

3.2.1 The general case

Vertical displacements derived from space-geodetic tech-
niques like InSAR or GPS are nothing else than temporal
differences of two sets of heights of a collection of points.
In case of InSAR we may have vertical deformations for
the time interval between two SAR acquisitions. In case
of GPS we may have the differences between the heights
of the stations of a permanent network at two epochs.

Note that a set of heights within a SAR image or cor-
responding to GPS points at a certain epoch are never
absolute heights, but always relative to a (non-stochastic
assumed) reference point. Since it is not always known
which point is selected as reference and whether this point
is also reference for another epoch, in our estimation pro-
cedure the heights of the reference points are additional
unknown parameters. Suppose that at epoch tl we have
a set of heights which are relative to point A, denoted as
hA

i,tl
, while at epoch tm we have a set of heights which are

relative to point B, denoted as hB
i,tm

(see Fig. 1), then for
a point i the difference between the two heights, denoted
as vi,tl tm , can be written as:

vi,tl tm
= −hA

i,tl
+ hB

i,tm
+εv

i,tl tm
, (11)

where the measurement noise of this vertical displace-
ment observation is contained in the term εv

i,tl tm
. Inserting

hA
i,tl

= hi,tl
− hA,tl

and hB
i,tm

= hi,tm
− hB,tm yields:

vi,tl tm
= −hi,tl

+ hi,tm
+ hA,tl

− hB,tm +εv
i,tl tm

, (12)

where hA,tl
denotes the height of reference A at time tl

and hB,tm the height of reference B at time tm. How-
ever, this observation equation cannot be used yet to es-
timate deformations, since one should realize that GPS or
InSAR-derived heights are geometric heights, i. e. they are
heights above a certain reference ellipsoid, e. g. WGS84.
When InSAR- or GPS-derived vertical displacement data
are integrated with leveling data, the observation equa-
tion should – like the leveling observation equation (7) –
be expressed as orthometric heights, i. e. heights with re-
spect to the geoid. Both geometric heights and orthometric
heights are however connected as follows, for example for
the heights of point i at epoch t:

hi,t = Hi,t + Ni,t. (13)

Here Ni,t denotes the height of the geoid above the ref-
erence ellipsoid (geoid undulation), see Fig. 2. The obser-
vation equation as function of the orthometric heights of
point i now becomes:

lllvi,tl tm
= −Hi,tl

+ Hi,tm − Ni,tl
+ Ni,tm

+hA,tl
− hB,tm +εv

i,tl tm
, (14)

This observation equation can be simplified, since it is
normally allowed to assume the geoid undulation as a
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Fig. 1: Set of heights at two epochs. At epoch tl the heights
are relative to the height of point A: hA

i,tl
= hi,tl

− hA,tl
, while

at epoch tm they are relative to point B: hB
i,tm

= hi,tm − hB,tm .



constant in time, i. e. Ni,tl
= Ni,tm . The observation equa-

tion then reduces to:

vi,tl tm
= −Hi,tl

+ Hi,tm + hA,tl
− hB,tm +εv

i,tl tm
. (15)

This observation equation can in a next step be expressed
as function of the vertical deformations by inserting ex-
pressions for Hi,tl

and Hi,tm , conform Eq. (1):

lllvi,tl tm
= −g

i,tl−t0
+ g

i,tm−t0
+ hA,tl

− hB,tm

−ηi,tl
+ ηi,tm

+εv
i,tl tm

. (16)

Note that the initial height of point i is eliminated in this
equation. Decomposing the vertical deformation due to
gas extraction into a trend and signal term, conform Eq.
(3), we obtain the following observation equation:

vi,tl tm
= −zi,tl−t0 + zi,tm−t0 + hA,tl

− hB,tm

−ξ i,tl−t0
+ξ i,tm−t0

− ηi,tl
+ ηi,tm

+εv
i,tl tm︸ ︷︷ ︸

ev
i,tl tm

. (17)

Similar to the leveling observation equation, the random
error term ev

i,tl tm
in Eq. (17) is a combination of defor-

mation signal, point noise and measurement noise. As
mentioned, there are no initial heights in this observation
equation, in contrast to the leveling observation equation
(9). On the other hand, in observation equation (17) we
have to account for a difference in reference heights A
and B. It should be noted that also the same reference
height can be used at both epochs. Suppose that this is
point A, then we have to account for the height diffe-
rence of point A in time: hA,tl

− hA,tm . It can also be true
that we a priori know that this reference point is stable.
In that case the difference in reference heights completely
disappears from observation equation (17).

3.2.2 InSAR-derived vertical displacement data

In this paper we focus on the integration of leveling data
with InSAR-derived vertical displacement data, rather
than GPS-derived vertical displacements. This choice is
not only motivated by the cost aspect, but also by the
spatial density of InSAR-derived deformation data (up to
1600 points/km2), which is much higher than of GPS data.
The temporal density of InSAR-derived data is lower than
of (permanent) GPS data, because of the revisit interval
of the SAR sensors onboard radar satellites, which can
be more than one month. However, this is not really an
issue for slow-term deformation problems as due to gas
extraction. The collection of InSAR-derived deformations
for one time interval is referred to as a vertical displace-
ment map. In order to make assumptions on the measure-
ment noise of InSAR-derived vertical displacements, it is
necessary to briefly explain the way these data are gen-
erated from raw InSAR observations.

Generation of an InSAR displacement map
Synthetic Aperture Radar sensors measure both magni-
tude and phase of the transmitted electromagnetic signal
that is backscattered from the earth’s surface. The phase
measurement is used to derive information on heights and
deformations of the terrain. This phase represents a com-
bination of the distance between the SAR antenna and the
surface, and the surface scattering effect. If a second SAR
data set is collected, then from comparing the phase of
the second image with the phase of the first, an interfero-
gram can be formed. The basic principle of interferometric
SAR is that if the surface characteristics are identical for
both images, the phase difference between correspond-
ing pixels in both images only accounts for the distance-
dependent component. The surface scattering effects will
be the same when the distance between the orbital po-
sitions of the radar (called the baseline) is small. This is
established by making benefit of the repeating constella-
tion of SAR sensors onboard radar satellites. For defor-
mation applications the baseline should ideally be zero
in order to eliminate topographic information from the
interferogram (since this may bias true surface deforma-
tions). However, due to satellites drifting from their nom-
inal orbits, baselines will be non-zero. Fortunately, the
interferogram can be corrected for topographic informa-
tion using an external digital elevation model (DEM). As
a result, a differential interferogram is obtained that only
contains the topographic changes that occurred between
the two SAR acquisitions.

Limitations of InSAR
Using the described procedure a vertical displacement
map with a very high resolution (about 25× 25 m2) can
be obtained. Since the accuracy of the phase measure-
ment is a fraction of (half) the radar wavelength (2–3 mm
for distance measurements of typical radars), this in prin-
ciple allows for mm-accuracy of vertical deformations
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the geometric height hi is given by the geoid undulation Ni .



(Hanssen 2001). There are however some important limi-
tations (Hanssen and Ferretti 2002):

� The phase measurements are ambiguous: only the
fractional phase can be measured while the number
of whole cycles is unknown.

� Inaccuracies in the satellite orbits cause baseline er-
rors which result in increased phase noise.

� Differences in atmospheric conditions between the
two SAR acquisitions cause spatially correlated er-
rors in the phase measurements.

� The surface backscattering characteristics within one
resolution cell (pixel) change in time, which causes
weak phase correlation (interferometric coherence)
between both images. This loss of coherence is
known as temporal decorrelation and makes InSAR
unsuitable for, for example, vegetated areas.

For the design studies described in Sect. 6 it is however
assumed that the first two limitations are overcome. It is
namely assumed that for every point in the displacement
map the phase can be successfully unwrapped and that
absolute phases are obtained. In addition, it is assumed
that errors due to the satellite orbits are absent by using
precise orbits.

Conventional vs. permanent-scatterer InSAR
The two other limitations of the InSAR technique, i. e.
the atmospheric errors and the temporal decorrelation,
are currently important topics of research. Recently the
so-called permanent-scatterers InSAR technique has been
developed to isolate coherent pixels and to solve the at-
mospheric errors (Ferretti et al. 2001). These coherent pix-
els (the permanent scatterers) are usually stable natural
reflectors, like roofs of buildings or rocks. Although the
locations of the permanent scatterers cannot be predicted,
their density will vary between 50 and 400 points/km2.
Despite this lower density compared to the conventional
InSAR technique in which just two acquisitions are used
to compute a displacement map (about 1600 points/km2),
it is still much higher than obtained with traditional
geodetic techniques like leveling and GPS. Drawback is
that for this technique many, e. g. more than 30, SAR
images are needed, from which the atmospheric errors
are estimated (Hanssen and Ferretti 2002). For the sim-
ulations described in Sect. 6 it is assumed that we have
InSAR-derived displacement maps based on the conven-
tional approach which can be biased by atmospheric er-
rors, as well as maps based on the permanent-scatterer
approach free of atmospheric errors.

Assumptions InSAR measurement noise
In this article the atmospheric errors – when present –
are modeled as random errors, which means that they are
part of the InSAR measurement noise term εv

i,tl tm
in Eq.

(17). As a consequence, the measurement noise becomes

spatially correlated. It is assumed that the covariance be-
tween points i and j in each map can be described by

σviv j = σ2
φδi j + σ2

a exp{− (
li j/La

)2}. (18)

In this covariance function σ2
φ denotes the variance of

the phase measurement and the Delta function is defined
as δi j = 1 for i = j and δi j = 0 for i 	= j. The at-
mospheric variance is denoted as σ2

a and the correlation
distance of the atmospheric errors as La. The variance of
each point in a displacement map due to measurement
noise follows thus as σ2

φ +σ2
a . In absence of atmospheric

errors, we set σ2
a = 0. Whereas the phase standard devi-

ation is at mm-level, the atmospheric standard deviation
is typical of the order of 1 cm. The correlation distance of
the atmospheric errors can be a few km.

When different maps have a common start date or end
date, the InSAR measurement noise should also address
temporal correlation. This correlation is positive when
two maps have either the same start or end date (in case of
so-called single-master interferograms; see Hanssen et al.
2003), whereas the correlation is negative when the end
date of the first map corresponds to the start date of the
second map (in case of so-called cascaded interferograms;
see ibid). Taking these considerations into account, the
covariance between point i of a displacement map over
time interval (tl , tm) and point j of a displacement map
over time interval (t f , tg) can be written as:

σεv
i,tl tm

εv
j,t f tg

=




σviv j , if tl = t f ∧ tm = tg
1
2σviv j , if tl = t f ∧ tm 	= tg,

or tl 	= t f ∧ tm = tg

− 1
2σviv j , if tl 	= tg ∧ tm = t f ,

or tl = tg ∧ tm 	= t f
0, otherwise.

(19)

4 Mathematical model

4.1 Functional model

For deformation estimation, the observation equations
derived in Sect. 3 are connected to the seven trend para-
meters per subsidence bowl through Eqs. (4) and (5). These
trend parameters are computed by means of an integrated
least-squares adjustment of all leveling and/or vertical
displacement data simultaneously. Since both Eqs. (4) and
(5) are nonlinear, we first need to linearize the observa-
tion equations. For the linearization we need approximate
values of all unknown parameters. After linearization, we
may reformulate the linearized observations equations as
a Gauss-Markov model:

E{
[

∆w
∆v

]
︸ ︷︷ ︸

y

} =
[

WAhgt WAsub 0
0 VAsub Asht

]
︸ ︷︷ ︸

A


 ∆Ht0

∆p
∆hAB




︸ ︷︷ ︸
x

, (20)
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where:

E{·} : mathematical expectation operator
∆w : »observed-minus-computed« vector of leveling data
∆v : »observed-minus-computed« vector of vertical

displacement data
∆Ht0 : incremental vector of leveling »null« heights
∆p : incremental vector of subsidence parameters
∆hAB : incremental vector of reference height differences

(»shifts«)
W : matrix to transform heights to leveling height

differences
V : matrix to transform heights to vertical displacement

height differences
Ahgt : matrix selecting null heights for leveling

observations
Asub : matrix with coefficients due to linearization of bowl

equations
Asht : matrix needed for the parameterization of shift

parameters.

Model (20), referred to as the functional model, distin-
guishes between three groups in parameter vector x. The
first group, ∆Ht0 , contains the initial or »null« heights
corresponding to the leveling points. It is not possi-
ble to estimate all null heights in the adjustment: we
have to constrain one of these heights to its a priori
value (or zero). The choice of this so-called S-basis (see
Baarda 1973) is arbitrary since it does not influence the
estimated subsidence. It is also not necessary that this
height remains stable. The second group of parameters
are the subsidence parameters. For nB bowls we have
∆p = (∆pT

1 , . . . , ∆pT
nB

)T , where ∆pB = (∆vB, ∆t0,B,
∆xc,B, ∆yc,B, ∆aB, ∆bB, ∆φB)T is the vector of seven
parameters of the Bth bowl. The subsidence parameters
are of course the parameters we are primarily interested
in. In this context it should be noted that for the start
time of subsidence, ∆t0,B, being estimable, we need data
of before the gas production started. Otherwise it should
be constrained to an a priori value. The third parameter
group, ∆hAB, contains the differences in reference heights
(shifts) of the vertical displacement data between different
epochs. Not the individual reference heights are estimable
in the adjustment, but only combined terms, for example
hA,tl

− hB,tm (see Eq. (17)). So for each set (or map) of
vertical displacement observations one shift is parameter-
ized.

Note from the design matrix A of model (20) that
the partial design matrices corresponding to the leveling
null heights (Ahgt) and the subsidence parameters (Asub)
are pre-multiplied by matrices W and V. Both matrices,
which only contain ones and zeros, are introduced to per-
form differencing operations. The reason for introducing
these matrices is that it is easier to set up the partial de-
sign matrices at the absolute point and epoch level, than
relative in space (in case of leveling), or relative in time
(in case of vertical displacement observations). Both ma-
trices W and V only contain (minus) ones and zeros. This
pre-multiplication is not necessary for the partial design

matrix of the shift parameters, since the estimable shift
parameters can be regarded as parameters that are already
differenced. Hence, matrix Asht is a simple vector having
ones at all entries.

To set up the partial design matrix of the subsidence
parameters, Asub, we also need the horizontal coordinates
of all involved leveling and vertical displacement points.
In order to perform an integral adjustment of both types
of observations, these horizontal positions must be de-
fined in one and the same coordinate system. If this is not
the case, coordinate transformations should be applied.

4.2 Stochastic model

The stochastic properties of the leveling and vertical dis-
placement data are modeled in the stochastic model, i. e.
the variance-covariance (vc-) matrix. This reads:

D{
[

∆w
∆v

]
︸ ︷︷ ︸

y

} =
[

Qw
ε 0

0 Qv
ε

]
+

[
W
V

]
(Qη + Qξ )

[
W
V

]T

︸ ︷︷ ︸
Qy

,

(21)

where:

D{·} : mathematical dispersion operator
Qw

ε : vc-matrix of the leveling data
Qv

ε : vc-matrix of the vertical displacement data
Qη : vc-matrix of the point instabilities
Qξ : vc-matrix of the deformation signal.

As shown, the vc-matrix of the observations consists of
two parts: a block-diagonal part (left of the plus sign
in Eq. (21)), and a part that consists of a multiplica-
tion of matrices (right of the plus sign). The first part
models the measurement noise. Both measurement noise
vc-matrices, Qw

ε and Qv
ε , are constructed using the co-

variance functions in Eqs. (10) and (19), respectively. The
second part models both point noise and deformation sig-
nal. The point noise vc-matrix, Qη, is created using the
covariance function in Eq. (2), while the vc-matrix ac-
counting for the deformation signal, Qξ , is filled using the
covariance function in Eq. (6). Note that since the point
noise is uncorrelated in space, there is no correlation be-
tween the leveling and vertical displacement data due to
point noise (since it can be proved that WQηVT = 0).
Both types of observations become correlated however,
because the spatially correlated deformation signal im-
plies that WQξVT 	= 0.

5 Estimation and testing procedure

A powerful consequence of formulating an integrated ad-
justment model (20) is that it enables statistical hypothe-
sis testing of both leveling and vertical displacement data.
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Note that the spatiotemporal subsidence model allows for
testing on (gross) errors in the data even when there is
no redundancy in the individual data sets. For example,
when a simple leveling line is measured at two epochs,
the individual »networks« do not have redundancy since
no loops can be formed. Redundancy is however intro-
duced when the two epochs are connected by means of
the spatiotemporal model (provided that the start time of
subsidence ∆t0,B is constrained; otherwise at least three
leveling epochs should be used). Statistical testing of the
data of individual vertical displacement maps is impossi-
ble when no spatiotemporal model is used. In contrast to
leveling the individual maps are not redundant and hence
it is not possible to form loops or whatsoever. However,
it is possible to test the data of an individual map when
the spatiotemporal model is introduced (provided that the
start time of subsidence ∆t0,B is constrained; otherwise at
least two maps should be used).

With the functional and stochastic models as specified
in the previous section, the best fitting subsidence model
is determined in a stepwise procedure of least-squares ad-
justment, statistical hypothesis testing and adaptation of
both the data and the model. In each step the actual model
and data (the so-called null-hypothesis model) are tested
against a number of alternative hypotheses, each suggest-
ing a specific model adaptation or possible error(s) in the
data. For an overview of the alternative hypotheses rel-
evant for subsidence monitoring we refer to Kenselaar
(2001).

5.1 Solving the trend model

When the null-hypothesis is not rejected eventually, the
least-squares solution for the unknown parameters of the
trend model, denoted as x̂, plus its variance-covariance
matrix, denoted as Qx̂, is obtained as:

x̂ =
(

ATQ−1
y A

)−1
ATQ−1

y y, Qx̂ =
(

ATQ−1
y A

)−1
.

(22)

The least-squares solution of the subsidence parameters
is part of vector x̂. It reads p̂ = p0 + ∆ p̂, where p0 is
the vector of approximate values. Using the solution for
the subsidence parameters, the least-squares solution for
the trend at any arbitrary point and at any epoch (not
necessarily at the locations of the measurement data or
at the measurement epochs) is obtained by inserting the
entries of p̂ into Eq. (4). For a point G at epoch tn this
solution is denoted as ẑG,tn−t0

.

5.2 Estimation of signal and total subsidence

In order to resolve the total subsidence at any point at
any epoch, besides the trend also the signal needs to be
solved, see Eq. (3). The signal is computed using the vector

of least-squares residuals of the trend model. This vector
is computed as:

ê = P⊥
A y, (23)

where the orthogonal projector is computed as P⊥
A = I −

A
(

ATQ−1
y A

)−1
ATQ−1

y . The least-squares solution of
the signal at a point G at epoch tn is now obtained as:

ξ̂G,tn−t0
= qT

ξG,tn−t0
MTQ−1

y ê, (24)

where MT =
[
WT , VT]

, and qξG,tn−t0
a vector account-

ing for the covariances between the signal at point G
at epoch tn and the signals at the observed points and
epochs. In fact, this computation of the signal for a speci-
fic point at a specific epoch corresponds to least-squares
collocation. With both trend and signal solved, the least-
squares solution of the total subsidence easily follows as:

ĝ
G,tn−t0

= ẑG,tn−t0
+ ξ̂G,tn−t0

. (25)

When the subsidence is estimated in this way for a grid
over the subsidence area, it is possible to create contour
maps of the estimated/collocated subsidence.

6 Simulations

In order to gather experience into the estimability of a
spatiotemporal subsidence bowl, some simulations were
carried out. Goal of these design studies is to evaluate
the performance of an integration of leveling and InSAR-
derived vertical displacement data for subsidence estima-
tion. Advantage of conducting simulations is that the per-
formance of the different processing strategies can then
easily be assessed by comparing the estimated subsidence
with this ground truth. In practice the true subsidence is
of course unknown and then it can be rather difficult to
separate the subsidence due to gas extraction from the
subsidence caused by other driving mechanisms (for ex-
ample, ground water variations).

6.1 Simulated subsidence

The design studies described in this article are a con-
tinuation of the simulations described in Kenselaar and
Martens (2000), in which only leveling measurements
were used. In our design studies we simulated the same
single subsidence bowl as in (ibid), but we also added a
signal to the subsidence trend. This deformation signal
was generated at a grid of 49 × 49 points over the sub-
sidence area of 25× 25 km, using the random generator
of Matlab. For this stochastic process we assumed a stan-
dard deviation of 2 mm/

√
yr and a correlation distance of

3 km, see Eq. (6). These values can be expected in prac-
tice (Houtenbos 2000). Tab. 1 summarizes the character-
istics of the simulated subsidence. Fig. 3 shows contour
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maps of this subsidence for 1 January 1991 (5.5 years af-
ter the start), while Fig. 4 shows contour maps for 1 Jan-
uary 1999 (13.5 years after the start). Note that due to the
simulated deformation signal, there is some small uplift
in the northwestern part of the area for 1 January 1999.
From the figures it seems that the contribution of the sig-
nal to the total subsidence can range up to 20 % at some
locations.

6.2 Simulated observations

Precise leveling data are simulated for the time span
1983–1999 at five epochs, at a regular interval of four

years. The leveling network is a regular grid of lines that
completely covers the area of 25× 25 km, with point dis-
tances of 3125 m. In the center of the subsidence area
even points are added which are halfway the leveling tra-
jectories, see Fig. 5 (left). This dense and regular leveling
network consisting of 121 points connected by 184 obser-
vations will probably yield very good results, but is very
expensive to measure and maintain it on a regular basis
(450(!) km of leveling per epoch). In the simulations it will
be referred to as network L.

In addition to leveling data, InSAR-derived vertical
displacement data are simulated for varying time inter-
vals. It is assumed that these displacement maps cover
the same time span as the leveling data, so from 1983 to
1999. We assume to have four InSAR maps available that
each cover the 4-year time interval between two level-
ing epochs, i. e. 1983–1987, 1987–1991, 1991–1995 and
1995–1999. Note that these four maps can – without loss
of information – be transferred to four maps that have
for example a common start date, i. e. 1983–1987, 1983–
1991, 1983–1995 and 1983–1999. So in the simulations
we could also have used this latter set of maps. The solu-
tion using either the first or the latter set will be exactly
the same, since the correlation between the maps is prop-
erly accounted for in the adjustment. Each displacement
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Fig. 3: Contour maps of simulated trend (left), signal (middle) and total deformation (sum of trend and signal; right) on
1 January 1991. All contour labels are in mm.

Fig. 4: Contour maps of simulated trend (left), signal (middle) and total deformation (sum of trend and signal; right) on
1 January 1999. All contour labels are in mm.

subsidence velocity bowl center -10.0 mm/yr
start time subsidence 1 June 1985
half long and short axes ellipse 5000 and 3500 m
argument long axis 80 gon
horizontal position bowl center exactly in the middle

of area of 25× 25 km
deformation signal σg = 2 mm/

√
yr

Lg = 3 km

Tab. 1: Characteristics of simulated subsidence



map covers the subsidence area of 25× 25 km in the form
of a regular grid. In the simulations we varied the spacing
(resolution) of this grid:

� Network I625 (see Fig. 5; middle), a grid with a spac-
ing of 1/3× 3125 m (the distance between points in
the leveling network) = 1041.67 m. This corresponds
to 25× 25 = 625 points for the complete subsidence
area. Note that this spacing is much larger than the
size of a resolution cell of real InSAR displacement
data, which is between 25 m (conventional InSAR)
and 160 m (permanent-scatterer InSAR). Due to com-
puter memory overflow it is not possible to use very
dense grids covering an area of 25× 25 km. It is
however expected that relatively sparse grids are suf-
ficient for this type of (smooth) deformation.

� Network I289 (see Fig. 5; right), a grid with a spac-
ing of 1.5 times the spacing of network I625, i. e.
1562.5 m. (Note that this distance corresponds to the
distances between the leveling points of network L
in the center of the subsidence area.) This spacing
corresponds to 17× 17 = 289 points for the complete
subsidence area, and this number is only 46 % of the
number of points of network I625.

With the horizontal positions of the leveling and InSAR
points extracted from the network configurations, the
systematic component of the observations was generated
using the simulated vertical deformations. Note that the
initial heights of the leveling benchmarks and the shifts
of the InSAR displacement maps were simulated as zero
values. In addition to this systematic component, for all
leveling and InSAR observations a random error was gen-
erated in order to simulate measurement noise and noise
due to point instabilities. For this purpose again the ran-
dom generator of Matlab was used. The leveling mea-
surement noise was generated with a standard deviation
of 0.7 mm/

√
km. For the InSAR data we generated two

data sets with different measurement noise in order to
investigate the effect of the presence of atmospheric ar-
tifacts. For both sets a phase standard deviation of 3 mm

was chosen for all points. For the atmosphere-biased map
the observations were generated with an additional ran-
dom error for atmospheric artifacts, having a standard
deviation of 1 cm and a correlation length of 5 km. The
standard deviation of leveling point noise was chosen as
0.6 mm/

√
yr, being a realistic assumption conform Wy-

att (1989) or Kenselaar and Martens (2000). Since InSAR
point noise is usually larger than leveling point noise
(Houtenbos 2003), a value of 1.2 mm/

√
yr was assumed

for the InSAR point noise.
The characteristics of the simulated observations are

summarized in Tab. 2.

6.3 Simulated processing strategies

In a search for more efficient monitoring strategies we
formulated some strategies for the processing of the sim-
ulated leveling and InSAR data. The central question
hereby is: how accurate can a certain strategy recover the
true subsidence? Since we have simulated the true subsi-
dence, the accuracy of a certain strategy can be assessed
by comparing the estimated subsidence at a certain loca-
tion/epoch with its simulated counterpart. This compar-
ison is conducted on a grid of 49 by 49 (= 2401) points
spanning the subsidence area of 25× 25 km. The follow-
ing leveling/InSAR strategies are considered:
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Fig. 5: Simulated data: leveling network L (left), InSAR displacement map I625 (middle) and InSAR displacement map I289

(right). In the figures also the contours of the subsidence bowl (trend) at one and two times the length of the axes are plotted.

leveling networks 1983, 1987, 1991, 1995, 1999
InSAR displacement
maps

1983–1987, 1987–1991, 1991–1995,
1995–1999

measurement noise
leveling

σwt = 0.7 mm/
√

km

measurement noise
InSAR

σφ = 3 mm (σa = 1 cm,La = 5 km)

point noise σbi
=

{
0.6 mm/

√
yr (leveling)

1.2 mm/
√

yr (InSAR)

Tab. 2: Characteristics of simulated observations



1. leveling only based on 5 networks L (L);
2. InSAR only based on 4 maps I625 (I1);
3. InSAR only based on 4 maps I289 (I2);
4. InSAR only based on 4 maps with atmospheric arti-

facts Ia
625 (I3);

5. leveling based on 3 networks integrated with InSAR
based on 4 maps with atmospheric artifacts Ia

625
(L/I3).

The choice of these strategies is motivated as follows. The
leveling-only strategy in which network L is surveyed
every four years is the most expensive strategy but has
been included since a leveling-only based strategy is the
usual approach for the monitoring of subsidence due to
gas extraction. The second and third strategies are InSAR-
only based on atmosphere-free displacement maps. From
these strategies it immediately follows how well InSAR is
able to recover the subsidence, as compared to leveling
only. The fourth strategy is also an InSAR-only strategy,
but then based on atmosphere-biased displacement maps.
In the fifth strategy the four atmosphere-biased InSAR
maps are combined with three leveling epochs.

6.4 Results and discussion

The relevant results of the processing of each strategy are
summarized in Tab. 3.

In the table first the F-test quotient is given, which is de-
fined as the ratio of the F-test (overall model test) statistic
with the critical value of the test. The expectation of this
F-test quotient is 1. Tab. 3 shows that for all strategies
this quotient is indeed very close to 1, and this is under-
standable because we simulated the observations, without
adding (gross) errors (aside from the random errors). This
is also a check that we simulated the data in a correct
way.

The second row in Tab. 3 shows the results of the
comparison of the estimated subsidence according to
each strategy, with our simulated subsidence, in fact the
ground truth. In the table the (relative) number of the
2401 grid points is given for which the estimated subsi-
dence agrees within 5 mm with the simulated subsidence
at those points. These discrepancies have also been in-
terpolated for the subsidence area and are visualized as
contour maps in Figs. 6, 7 and 8. Note that these graphs

and also the percentages in Tab. 3 are given for 1 January
1999, the last observed epoch. An exception to this is the
contour map left in Fig. 6, which visualizes the discrep-
ancies on 1 January 1991, halfway the time span 1983–
1999. This map has been included to demonstrate that
the discrepancies generally grow in time. By evaluating
the discrepancies only for the last epoch, 1 January 1999,
the percentages can be considered as safe lower bounds.
In case of the leveling-only strategy L this lower bound
is 84 %. In case of InSAR only (strategies I1 and I2) it
follows that the four I625-maps (with a spacing of about
1042 m) are able to recover the subsidence very precisely:
for almost 90 % of the area the subsidence is recovered
within 5 mm. However, when the spacing of the maps is
increased (about 1563 m; in case of the I289 maps) this
percentage is reduced to about 68 %. Fig. 7 visualizes
the discrepancies for both strategies. Note that with an
even smaller spacing than of the I625-maps we proba-
bly would have obtained a percentage close to 100 %, but
this strategy has not been taken into account as due to
computer memory overflow problems. The displacement
maps in strategies I1 and I2 are simulated without atmo-
spheric errors. When we use the atmosphere-biased Ia

625-
maps (strategy I3) the result becomes much worse: for
only 68 % of the area the recovered subsidence is within
5 mm of the ground truth, versus 90 % for strategy I1, in
which the maps have the same spacing as in strategy I3.
The left contour map in Fig. 8 visualizes these large di-
screpancies. The map shows that the discrepancies may
be up to 20 mm.

Based on the good performance of the InSAR-only
strategy I1 versus the performance of the leveling-only
strategy L, it is expected that an integration of these
maps with leveling data would barely improve the InSAR-
only results. So this strategy was not tried. Another sit-
uation applies to the atmosphere-biased InSAR data; for
these maps an integration with leveling data might be
worthwhile. Hence in strategy L/I3 the atmosphere-biased
Ia
625-maps are combined with leveling data. However, for

this integration we only used three leveling networks (at
epochs 1983, 1991 and 1999), since taking all five net-
works would still lead to a very expensive solution. This
integrated L/I3-strategy indeed resulted in a significant
improvement: for 93 % of the area at 1 January 1999 the
subsidence could be recovered with an accuracy better
than 5 mm, thus an improvement of about 25 % compared
to the InSAR-only strategy I3. The right contour map in
Fig. 8 visualizes the discrepancies of the L/I3-strategy.

These simulations demonstrate that an integration of
leveling and InSAR data only leads to better results when
the InSAR data are of minor quality due to for example
atmospheric artifacts. Otherwise one may rely on InSAR
only for this type of subsidence monitoring. As shown in
Tab. 3, the precision of the estimated subsidence velocity
is in the integrated case comparable to the precision of
the velocity when either good InSAR data or frequently
surveyed leveling data are used: about 0.5 mm/yr.
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L I1 I2 I3 L/I3
F-test quotient 0.94 1.00 0.98 0.97 0.97
% of discrepancies < 5 mm, at
1 January 1999

83.9 89.3 68.1 67.8 92.8

precision subs. velocity center
(mm/yr)

0.5 0.5 0.5 1.2 0.6

redundancy 793 2489 1145 2489 2921
number of epochs 5 - - - 3
number of maps - 4 4 4 4

Tab. 3: Results processing



7 Conclusions

There are several advantages of the approach to continu-
ous spatio-temporal modeling of land subsidence due to
gas extraction as described in this article:

� It allows for a relatively easy integration of measure-
ment techniques, at observation level. Hereby it is
not necessary that the different measurement tech-
niques occupy the same points or are observed at the
same epochs (although this was the case in the sim-
ulations).

� It enables rigorous statistical testing of all observa-
tions, even those observations that are not redundant
when considered as individual data sets.

� In contrast to many other deformation modeling
schemes, the approach does not require stable ref-
erence points.

In this article it has furthermore been demonstrated that
despite its benefits (high spatial resolution, relatively low
costs), InSAR is currently not yet a fully reliable tech-
nique for the precise monitoring of deformations due to
gas extraction. Leveling data remain necessary, especially
when the InSAR displacement data are contaminated with
atmospheric errors or at places where no coherent InSAR
data are available, e. g. due to vegetation. In addition,
leveling data are indispensable for the detection of defor-
mations that started before 1992, the year the InSAR data
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Fig. 6: Discrepancies
between estimated and
simulated subsidence for
1 January 1991 (left) and
1 January 1999 (right)
using the L-strategy.
Contours are plotted for
each 5 mm difference.

Fig. 7: Discrepancies
between estimated and
simulated subsidence for
1 January 1999 using the
I1-strategy (left) and the
I2-strategy (right).
Contours are plotted for
each 5 mm difference.

Fig. 8: Discrepancies
between estimated and
simulated subsidence for
1 January 1999 using the
I3-strategy (left) and the
L/I3-strategy (right).
Contours are plotted for
each 5 mm difference.



were archived for the first time. The development of the
permanent-scatterers InSAR technique is promising, since
the problems of low coherence and atmospheric errors are
being tackled. However, because the number and location
of the permanent scatterers cannot be predicted with this
technique, leveling may still be necessary in areas with
too few permanent scatterers.
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