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Abstract The first objective of this paper is to show that
some basic concepts used in global navigation satellite sys-
tems (GNSS) are similar to those introduced in Fourier
synthesis for handling some phase calibration problems. In
experimental astronomy, the latter are at the heart of what is
called ‘phase closure imaging.’ In both cases, the analysis of
the related structures appeals to the algebraic graph theory
and the algebraic number theory. For example, the estima-
ble functions of carrier-phase ambiguities, which were intro-
duced in GNSS to correct some rank defects of the undif-
ferenced equations, prove to be ‘closure-phase ambiguities:’
the so-called ‘closure-delay’ (CD) ambiguities. The notion of
closure delay thus generalizes that of double difference (DD).
The other estimable functional variables involved in the
phase and code undifferenced equations are the receiver
and satellite pseudo-clock biases. A related application,
which corresponds to the second objective of this paper,
concerns the definition of the clock information to be broad-
casted to the network users for their precise point positioning
(PPP). It is shown that this positioning can be achieved by
simply having access to the satellite pseudo-clock biases.
For simplicity, the study is restricted to relatively small net-
works. Concerning the phase for example, these biases then
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include five components: a frequency-dependent satellite-
clock error, a tropospheric satellite delay, an ionospheric
satellite delay, an initial satellite phase, and an integer satel-
lite ambiguity. The form of the PPP equations to be solved
by the network user is then similar to that of the traditional
PPP equations. As soon as the CD ambiguities are fixed and
validated, an operation which can be performed in real time
via appropriate decorrelation techniques, estimates of these
float biases can be immediately obtained. No other ambi-
guity is to be fixed. The satellite pseudo-clock biases can
thus be obtained in real time. This is not the case for the
satellite-clock biases. The third objective of this paper is to
make the link between the CD approach and the GNSS meth-
ods based on the notion of double difference. In particular,
it is shown that the information provided by a maximum
set of independent DDs may not reach that of a complete
set of CDs. The corresponding defect is analyzed. One of
the main results of the corresponding analysis concerns the
DD–CD relationship. In particular, it is shown that the DD
ambiguities, once they have been fixed and validated, can be
used as input data in the ‘undifferenced CD equations.’ The
corresponding algebraic operations are described. The satel-
lite pseudo-clock biases can therefore be also obtained via
particular methods in which the notion of double differencing
is involved.

Keywords GNSS networks · Phase calibration ·
Undifferenced and differenced methods · PPP · RTK

1 Introduction

The global positioning techniques are based on two types of
data: the (carrier-)phase and code (or pseudo-range) observa-
tions. With nν carrier waves, we first concentrate on the phase
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274 A. Lannes, P. J. G. Teunissen

equations. For each frequency ν, at each epoch k (where k
stands for tk), and for each receiver–satellite pair (i, j) ≡
(ri , s j ), these equations are of the form (see, e.g., Teunissen
and Kleusberg 1998)

�ν,k(i, j) = ρk(i, j)+ Tk(i, j)− κν Ik(i, j)

+[δt (r)
φ;ν,k(i)− δt (s)

φ;ν,k( j)]
+ λν[ϕ(r)(i)− ϕ(s)( j)+ Nν(i, j)]
+ εφ;ν,k(i, j) (1)

where

κν = ν2
1/ν2 = λ2

ν/λ
2
1 (2)

The expectation values of the noise terms εφ;ν,k(i, j) are sup-
posed to be zero. Here, the phase data�ν,k(i, j) are expressed
in length units; ρk(i, j) is the receiver–satellite range: the
distance between satellite s j (at the time tk −�tk where
the signal is emitted) and receiver ri (at the time tk of its
reception). The quantities Tk(i, j) and Ik(i, j) are the tropo-
spheric and ionospheric delays, respectively. The λνs denote
the wavelengths of the carrier waves involved in the observa-
tional process. Note that κν1 = 1. The integers Nν(i, j) are
the integer carrier-phase ambiguities: Nν(i, j) ∈ Z;ϕ(r)(i)
and ϕ(s)( j) are the initial phases at receiver ri and satel-
lite s j , respectively. These phases are expressed in cycles.
The instrumental biases and the clock errors depending on
ri , ν and k are lumped together in the frequency-dependent
receiver-clock errors δt (r)

φ;ν,k(i). Here, the latter are expressed
in length units. Likewise, the instrumental biases and the
clock errors depending on s j , ν, and k are lumped together

in the frequency-dependent satellite-clock errors δt (s)
φ;ν,k( j).

In this paper, we consider the general case where we have
no a priori information on the functions δt (r)

φ;ν,k, δt (s)
φ;ν,k, ϕ

(r),

and ϕ(s).
Just for the purpose of illustrating our approach, we

now make some simplifying assumptions concerning the
GNSS network. These assumptions do not reduce the gen-
eral applicability, but for our present objectives simplify
the derivations somewhat. The study is restricted to rel-
atively small networks. More precisely, we assume that
Tk(i, j) and Ik(i, j) do not depend on i :

Tk(i, j) = Tk( j), Ik(i, j) = Ik( j) (3)

Moreover, the positions of the receivers and satellites are
assumed to be known. Equation (1) is then of the form

��
ν,k(i, j) = [δt (r)

φ;ν,k(i)− δτ
(s)
φ;ν,k( j)] − κνIk( j)

+ λν[ϕ(r)(i)− ϕ(s)( j)+ Nν(i, j)]
+ εφ;ν,k(i, j) (4)

where

��
ν,k(i, j) = �ν,k(i, j)− ρk(i, j) (5)

and

δτ
(s)
φ;ν,k( j) := δt (s)

φ;ν,k( j)− Tk( j) (6)

Concerning the code, we then have similarly

P�
ν,k(i, j) = [δt (r)p;ν,k(i)− δτ

(s)
p;ν,k( j)] + κνIk( j)

+εp;ν,k(i, j) (7)

where

P�
ν,k(i, j) = Pν,k(i, j)− ρk(i, j) (8)

and

δτ
(s)
p;ν,k( j) := δt (s)p;ν,k( j)− Tk( j) (9)

The operator of the linear problem defined by the undiffer-
enced equations (4) and (7) is not of full rank. The null space
of this operator can be identified by showing which parameter
changes leave the observations invariant. The corresponding
rank deficiency can then be eliminated through an appropri-
ate reduction and redefinition of the unknown parameters.
The latter are the estimable functions of parameters of the
minimum-constrained problem thus defined. The most gen-
eral method associated with this analysis is the S-basis tech-
nique developed by Baarda (1973), Teunissen (1984), and de
Jonge (1998).

The first objective of this paper is to make the link
with a method developed in experimental astronomy for
solving a similar problem: the phase calibration problem.
This problem plays a key role when imaging brightness
sources at high resolution via Fourier synthesis techniques;
see Remark 3.1. In fact, this calibration problem is at the
heart of what is called ‘phase closure imaging’ (PCI) (see,
e.g., Lannes 2005). To introduce the elements involved in this
link, we first reduce the rank deficiency of Eqs. (4) and (7).
This is done in Sect. 2 by performing some elementary pre-
liminary parametrization. Concerning the phase, we are then
left with a key problem. The latter, which is presented in
Sect. 3, can be handled in two different ways. The first one
derives from the approach developed in experimental astron-
omy (Approach 1). The GNSS version of the corresponding
theoretical framework is introduced in Sect. 4. The second
approach corresponds to the implementation of the S-basis
technique for correcting the rank defect of the key prob-
lem in question (Approach 2). The equivalence of these two
approaches is established through Sects. 5 and 6. In fact,
as phase calibration problems are embedded in the process-
ing of GNSS signals, the concepts introduced in these two
approaches lead to a better understanding of these topics.
For example, the PCI concept of ‘closure-phase ambiguity’
is equivalent to that of ‘estimable function of carrier-phase
ambiguities.’ These estimable functions are therefore ‘clo-
sure-delay’ (CD) ambiguities. The notion of closure delay
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thus generalizes that of double difference (DD). As speci-
fied in Sect. 7, the other estimable functions of parameters
involved in the undifferenced equations are the receiver and
satellite pseudo-clock biases. How to solve these equations
in the least-square (LS) sense is summarized in Sect. 8.

A related application, which corresponds to the second
objective of this paper, concerns the definition of the clock
information to be broadcasted to the network users for their
precise point positioning (PPP). The corresponding study is
presented in Sect. 9. It is then shown that this precise position-
ing can be achieved by simply having access to the satellite
pseudo-clock biases provided by the network. For example,
concerning the phase, these pseudo-clock biases include five
components: a frequency-dependent satellite-clock error, a
tropospheric satellite delay, an ionospheric satellite delay, an
initial satellite phase, and an integer satellite ambiguity. The
form of the PPP equations to be solved by the user is then
similar to that of the traditional PPP equations (for the cor-
responding standard approaches see, e.g., Zumberge et al.
1997; Ge et al. 2008; Bertiger et al. 2010). As soon as the
CD ambiguities are fixed and validated (see Sect. 8), esti-
mates of the satellite pseudo-clock biases can be immediately
obtained. No other ambiguity is then to be fixed. These esti-
mates can therefore be obtained in real time. Note that this is
not the case for the satellite-clock biases (see, e.g., Bertiger
et al. 2010; Dow et al. 2009).

The third objective of this paper is to make the link
between the CD approach and the GNSS methods based on
the notion of double difference. In particular, it is shown in
Sect. 10 that the information provided by a maximum set of
independent DDs may not reach that of a complete set of
CDs. The corresponding defect is analyzed. One of the main
results of the corresponding analysis concerns the DD–CD
relationship. In particular, it is shown that the DD ambigu-
ities, once they have been fixed and validated, can be used
as input data in the ‘undifferenced CD equations.’ The cor-
responding algebraic operations are described. The satellite
pseudo-clock biases can therefore be also obtained via par-
ticular methods in which the notion of double differencing
is involved. Comments on the key points of our contribution
are to be found in Sect. 11.

2 Preliminary parametrization

The rank deficiency of Eq. (4) can be reduced through the
elementary parametrization

��
ν,k(i, j) = [α[r]

φ;ν,k(i)− α
[s]
φ;ν,k( j)] + λν Nν(i, j)

+ εφ;ν,k(i, j) (10)

in which

α
[r]
φ;ν,k(i) := α

(r)
φ;ν,k(i)− α

(s)
φ;ν,k(1) (11)

α
[s]
φ;ν,k( j) := α

(s)
φ;ν,k( j)− α

(s)
φ;ν,k(1) (12)

where

α
(r)
φ;ν,k(i) := δt (r)

φ;ν,k(i)+ λνϕ
(r)(i) (13)

α
(s)
φ;ν,k( j) := δτ

(s)
φ;ν,k( j)+ κνIk( j)+ λνϕ

(s)( j) (14)

The code equation (7) is then parametrized similarly:

P�
ν,k(i, j) = [α[r]p;ν,k(i)− α

[s]
p;ν,k( j)] + εp;ν,k(i, j) (15)

Here,

α
[r]
p;ν,k(i) := α

(r)
p;ν,k(i)− α

(s)
p;ν,k(1) (16)

α
[s]
p;ν,k( j) := α

(s)
p;ν,k( j)− α

(s)
p;ν,k(1) (17)

where

α
(r)
p;ν,k(i) := δt (r)p;ν,k(i) (18)

α
(s)
p;ν,k( j) := δτ

(s)
p;ν,k( j)− κνIk( j) (19)

In this parametrization, according to Eqs. (11), (12), (16)
and (17), s1 is the satellite that defines the pseudo-clock error
references for the phase and the code. Indeed, we have intro-
duced the constraints

α
[s]
φ;ν,k(1) = 0, α

[s]
p;ν,k(1) = 0 (20)

Other constraints can equally well be imposed. As suggested
by this preliminary parametrization, the pseudo-clock (func-
tional) variables α

[r]
μ;ν,k and α

[s]
μ;ν,k (for μ = φ or p) will play

an important role.

3 The key problem

Concentrating on Eq. (10), let us set

α[r](i) ≡ α
[r]
φ;ν,k(i), α[s]( j) ≡ α

[s]
φ;ν,k( j)

λ ≡ λν, N (i, j) ≡ Nν(i, j), ε(i, j) ≡ εφ;ν,k(i, j)

and

ϑ(i, j) ≡ ��
ν,k(i, j)

Up to the error term ε(i, j), Eq. (10) is then read as

ϑ(i, j) = [α[r](i)− α[s]( j)] + γ (i, j) (21)

where γ (i, j) = λN (i, j).
The following preliminary problem can then be addressed:

ϑ being known, to which extent is it possible to solve Eq. (21),
with α[s](1) = 0, α[r], α[s] and γ being real-valued func-
tional variables. Clearly, α[r] is defined by m real parame-
ters to be determined: α[r](1), . . . , α[r](m). Likewise, α[s] is
defined by n − 1 unknown parameters: α[s](2), . . . , α[s](n).
In the ‘float problem’ in question, γ is characterized by ne
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276 A. Lannes, P. J. G. Teunissen

values to be somehow identified. In Approach 2, the guid-
ing idea is then to correct for the rank defect of Eq. (21).
As already pointed out, this approach is induced by the anal-
ysis developed by Baarda (1973) and Teunissen (1984) for
correcting larger rank defects.

Without any reference to rank defects, a relation such as
Eq. (21) can equally well be regarded as a particular decom-
position of ϑ to be defined. The corresponding approach is
referred to as Approach 1. It corresponds to the analysis pre-
sented in Lannes and Gratton (2009). As clarified via Sects. 4
and 5, a key notion is then introduced: the notion of closure
delay (CD).

Remark 3.1 Approach 1 derives from a similar problem
encountered in experimental astronomy: the problem of
phase calibration. This operation plays a key role when imag-
ing brightness sources at high resolution via Fourier synthesis
techniques (see, e.g., Lannes 2005). This problem, which is
at the heart of what is called ‘phase closure imaging’ (PCI),
is to identify some phase biases δ(i). In the absence of noise,
the phasor exp{iφ} of the ‘experimental complex visibility
function’ of the calibrator (a reference point-source bright-
ness distribution) is then related to δ by a relationship of the
form

exp{iφ(i, j)} = exp{i[δ(i)− δ( j)]} (22)

Here, the pairs (i, j) correspond to the baselines of the inter-
ferometric device; for further details (not related to the objec-
tives of the present purposes), see Sect. 1 in Lannes (2005).
The relationship between the phases φ and δ is therefore
defined modulo 2π :

φ(i, j) = [δ(i)− δ( j)] + 2π N (i, j) (23)

Setting

ϑ := λ
φ

2π
, α := λ

δ

2π
(24)

we then have

ϑ(i, j) = [α(i)− α( j)] + γ (i, j) (25)

where γ (i, j) = λN (i, j).
Clearly, Eqs. (21) and (25) share a common feature. Phase

calibration problems are therefore embedded in the process-
ing of GNSS signals.

4 Theoretical framework

In Sect. 4.1, we first introduce the notions GNSS grid and
GNSS graph. Section 4.2 is devoted to the concepts of
spanning tree and loops. We then define related spaces of
functions (Sect. 4.3).

4.1 GNSS grid and graph

The GNSS network includes m stations, and thereby m multi-
frequency receivers ri . The number of satellites s j involved in
the observational process over some time interval [t1, tk] ≡
[1, k] is denoted by n. The ‘observational grid’ of the net-
work is therefore a grid Go including m lines, n columns,
and mn points; see Fig. 1. For example, in the case of large
networks, m and n are of the order of 100 and 32, respec-
tively. A function such as �ν,k or ρk , with k in [1, k], takes
its values on some points (i, j) of Go. These points form a
subset of Go denoted by Gk , the grid that characterizes the
scenario at epoch k: the ‘GNSS grid.’ When no confusion
may arise, subscript k is omitted: G ≡ Gk .

In the example presented in the upper part of Fig. 1, the
points (i, j) of G are shown as black dots. As illustrated
in the lower part of this figure, these points correspond to
the ‘edges’ (ri , s j ) of the GNSS graph to be considered;
E denotes the set of its edges; ne is their number. The receiv-
ers and the satellites involved in the definition of these edges
define the ‘vertices’ of this graph; V denotes the set of its
vertices, and nv their number:

nv = m + n (26)

A GNSS graph G is therefore defined by the pair (V, E):

G ≡ G(V, E)

For simplicity, we now assume that G is connected (see, e.g.,
Biggs 1996): given any two vertices of V , there exists a path
of edges of E connecting these vertices.

Fig. 1 GNSS grid G and GNSS graph G. In the scenario described
here (Scenario 1), the observational grid Go includes 12 points: m = 3,
n = 4. The GNSS grid of epoch k, G ≡ Gk , includes 9 points; these
points are shown as black dots. The corresponding graph, G ≡ Gk ,
includes 7 vertices and 9 edges: nv = m + n = 7, ne = 9. The data cor-
responding to the receiver–satellite pairs (r1, s2), (r2, s3), and (r3, s1)

are missing
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4.2 GNSS spanning tree and loops

As illustrated in Fig. 2, a spanning tree of G ≡ G(V, E) is a
subgraph Gst ≡ G(V, Est) formed by nv vertices and nv − 1
edges, with no ‘cycle’ in it. Here, ‘cycle’ is used in the sense
defined in algebraic graph theory (Biggs 1996). In the GNSS
community, to avoid any confusion with the usual notion
of wave cycle, it is not forbidden to substitute the term of
‘loop’ for that of ‘cycle.’ In this context, the number of loops
defined through a given fixed (but arbitrary) spanning tree is
the number of edges of E that do not lie in Est . These edges,

c(�) := (ri� , s j� ), (27)

are said to be ‘loop-closure edges’ (see Fig. 2). Their number
is denoted by nc:

nc = ne − nst (28)

where

nst := nv − 1 = m + n − 1 (29)

To select a GNSS spanning tree, the edges of E are first
ordered somehow. The corresponding sequence is of the form
{e(q) : q = 1, . . . , ne}. The algorithm is the following: set
q = 0, nst = 0, and Est = ∅ (the empty set). Then,

(i) If nst = nv − 1, terminate the process; otherwise, set
q

set= q + 1.
(ii) When the vertices of e(q) are not connected via edges

of Est, set Est
set= Est ∪ {e(q)} and nst

set= nst + 1; then go
to step (i).

By construction, the spanning tree thus found depends on
how the edges are ordered. The subgrid of G corresponding

Fig. 2 GNSS spanning tree and loops. The black edges of the graph G
introduced in Fig. 1 are the edges of the selected spanning tree Gst .
The points of the corresponding subgrid Gst are shown as black dots.
The remaining points of G (the red dots of G) correspond to the loop-
closure edges (the red edges of G). We then have one loop of order 4,
and two loops of order 6: (r2 , s4 , r1 , s1), (r3, s3, r1, s1, r2, s2), and
(r3, s4, r1, s1, r2, s2). These orders are shown as red numbers

to the edges of Est is denoted by Gst;Gc is that corresponding
to the loop-closure edges:

Gc := {(i, j) ∈ G : (i, j) /∈ Gst} (30)

Clearly, Gc includes nc loop-closure points; see Eq. (28) and
Fig. 2.

Example 4.1 To show, in concrete manner, how this
algorithm works, we now consider its action on the grid G
of Fig. 2, its points being ordered line by line.

The points of the first line of G, the points (1, 1), (1, 3)

and (1, 4), define the first three edges of Est:

Est
set={(r1, s1), (r1, s3), (r1, s4)} (nst = 3)

By construction, four vertices of G are then connected: r1, s1,

s3, and s4.
The next point of G, the first point of line 2, is associated

with edge (r2, s1). As r2 and s1 are not connected via edges
of Est, this edge cannot be a loop-closure edge. We therefore
set

Est
set= Est ∪ {(r2, s1)} (nst = 4)

Five vertices are then connected: r1, s1, s3, s4, and r2.
The next point of line 2 is associated with edge (r2, s2).

As r2 and s2 are not connected via edges of Est, we set

Est
set= Est ∪ {(r2, s2)} (nst = 5)

Six vertices are then connected: r1, s1, s3, s4, r2, and s2.
The next point of G, the last point of line 2, is associated

with edge (r2, s4). As r2 and s4 are already connected, this
edge closes a loop with some edges of Est. As a result, this
edge is the first loop-closure edge [see Eq. (27)]:

c(1) = (r2, s4)

The corresponding loop, (r2 , s4 , r1 , s1), is of order 4: it
includes four edges (see Fig. 2).

The next point of G, the second point of line 3, is asso-
ciated with edge (r3, s2). As r3 and s2 are not connected via
edges of Est, we then set

Est
set= Est ∪ {(r3, s2)} (nst = 6)

As all the vertices of E are then connected, the algorithm
stops: Est is then completely defined.

The remaining points of line 3 therefore define two loop-
closure edges:

c(2) = (r3, s3), c(3) = (r3, s4)

These loops are of order 6; see Fig. 2.

Remark 4.1 In the special case of the graph shown in Fig. 2,
there exist particular spanning trees for which the three loops
are of order 4. As the choice of the spanning tree is arbitrary,
it is not useful to search for such spanning trees. The con-
nection with the traditional notion of double difference is
specified in Sect. 10.
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Remark 4.2 In Example 4.1, the points of G are ordered line
by line. In fact, to handle some graph transitions (i.e., some
scenario changes), one may be led to order them in a more
subtle manner; see Sect. 7.4.3 in Lannes and Gratton (2009).

4.3 Reference spaces

For each frequency ν, we now introduce several spaces: the
vertex-bias space, the edge-delay space, the spanning-tree
space, the closure-delay space, and the bias-delay space.

Vertex-bias space. Let V0 be the space of functions

α := (α[r], α[s]) (31)

where α[s](1) = 0. This space is referred to as the vertex-
delay space. Note that [see Eq. (29)]

dim V0 = nst (32)

Edge-delay space. A function ϑ taking its values on G, and
thereby on E , can be regarded as a vector of

E := R
ne

The values of ϑ on G are then regarded as the components
of ϑ in the standard basis of this edge-delay space.

Spanning-tree and closure-delay spaces. The functions of E
that vanish on Gc form a subspace of E denoted by F st: the
spanning-tree space. Likewise, the functions of E that vanish
on Gst form a subspace of E denoted by Fcd: the closure-
delay (CD) space; this terminology is clarified in Sect. 5. As
illustrated in Fig. 3, E is the orthogonal sum of F st and Fcd.
Clearly [see Eqs. (29) and (28)],

dim F st = nst, dim Fcd = nc (33)

Bias-delay space. By definition, the vertex-bias operator is
the operator from V0 into E defined by the relation (see
Remark 4.3 further on)

(Bα)(i, j) := α[r](i)− α[s]( j) (34)

The range of B, which is denoted by F (see Fig. 3), is referred
to as the bias-delay space. Its functions β(i, j) are of the form
α[r](i)− α[s]( j). As B is of full rank, we have

dim F = nst (35)

Remark 4.3 The matrix of B is generally expressed in the
standard bases of V0 and E . For example in Scenario 1 (see
Fig. 1), the points of G being ordered line by line, we then

ϑ
ϑ[r] − ϑ[s]

Qstϑ

ϑ[cd]

E

F st F

0 F cd

Fig. 3 Canonical decompositions of the edge-delay space. In this geo-
metrical representation of the edge-delay space E, F st is the spanning-
tree space. This space is isomorphic to the vertex-bias space V0; Qstϑ is
the orthogonal projection of ϑ on F st . The orthogonal complement
of F st in the Euclidean space E is the closure-delay space Fcd. The
range of the vertex-bias operator B, the bias-delay space, is a subspace
of E denoted by F . This space is isomorphic to F st and thereby to V0.
As illustrated here, E is the oblique direct sum of F and Fcd; for further
details, see Property 2 in Sect. 5.

have

[B][α] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 0 0 0
0 1 0 −1 0 0
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 1 0 −1 0
0 0 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α[r](1)

α[r](2)

α[r](3)

α[s](2)

α[s](3)

α[s](4)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The columns of [B] then define the standard basis of F .

5 Approach 1

This approach is based on the following property:

Property 1 Given any edge-delay function ϑ taking its
values on G, for each spanning tree Gst of G, there exists
a unique set of receiver and satellite delays

{
ϑ [r](i)

}m

i=1
∪

{
ϑ [s]( j)

}n

j=1
with ϑ [s](1) = 0

such that ϑ(i, j) = ϑ [r](i) − ϑ [s]( j) on the points of Gst.
When ϑ is an integer-valued function, these delays are also
integer valued.

More concretely, the following process provides these delays
in a recursive manner. This type of recursive process was
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introduced for the first time in the analysis of the phase cali-
bration operation in PCI; see Sect. 2E in Lannes (2005).

Recursive process. Set ϑ [s](1) = 0; then span the points
of Gst line by line (see Fig. 2). For each point (i, j) thus
encountered, then proceed as follows:

If ϑ [s]( j) has already been fixed, and ϑ [r](i) is not fixed
yet, set ϑ [r](i) = ϑ(i, j)+ ϑ [s]( j).

If ϑ [r](i) has already been fixed, and ϑ [s]( j) is not fixed
yet, set ϑ [s]( j) = ϑ [r](i)− ϑ(i, j).

To obtain all these delays, Gst is to be spanned in this way
as many times as required. For a given spanning tree, the
set of all these delays is unique. Indeed, applied to a func-
tion ϑ vanishing on the points of Gst, this recursive process
provides nought delays.

The only operations involved in this process are algebraic
sums. The last assertion of Property 1 results from this fact.

Example 5.1 To illustrate this recursive differential process,
we now follow its action on the grid Gst of Fig. 2. As ϑ [s](1)

is zero, we then obtain successively:

ϑ [r](1) = ϑ(1, 1)+ ϑ [s](1) = ϑ(1, 1)

ϑ [s](3) = ϑ [r](1)− ϑ(1, 3)

ϑ [s](4) = ϑ [r](1)− ϑ(1, 4)

ϑ [r](2) = ϑ(2, 1)+ ϑ [s](1) = ϑ(2, 1)

ϑ [s](2) = ϑ [r](2)− ϑ(2, 2)

ϑ [r](3) = ϑ(3, 2)+ ϑ [s](2)

Closure delays. According to Property 1, the quantities

ϑ [cd](i, j) := ϑ(i, j)− [ϑ [r](i)− ϑ [s]( j)] (36)

vanish on the points of Gst. The values of ϑ [cd](i, j) of inter-
est are therefore defined on the CD subgrid Gc; see Eq. (30)
and Fig. 2. We now explain why these nc values can be
referred to as the ‘closure delays’ of ϑ , hence the notation cd
or CD.

Let us consider the value of ϑ [cd] on the �th loop-closure
point: ϑ [cd](i�, j�); see Eq. (27). Any function β in F satis-
fies the following property [see Eq. (34)]: the alternating sum
of the values of β along the edges of any loop of G is zero. It
then follows from Eq. (36) that ϑ [cd](i�, j�) is the alternating
sum of the values of ϑ along the edges of the �th loop. More
precisely, this result holds when this sum starts with the value
of ϑ on the �th loop-closure point. This is why ϑ [cd](i�, j�)
can be regarded as the closure delay of ϑ for the �th loop. The
notion of closure delay therefore generalizes that of double
difference. For example, in the scenario of Fig. 2, we have

ϑ [cd](2, 4) = ϑ(2, 4)− ϑ(1, 4)+ ϑ(1, 1)− ϑ(2, 1)

ϑ [cd](3, 3) = ϑ(3, 3)− ϑ(1, 3)+ ϑ(1, 1)− ϑ(2, 1)

+ϑ(2, 2)− ϑ(3, 2)

ϑ [cd](3, 4) = ϑ(3, 4)− ϑ(1, 4)+ ϑ(1, 1)− ϑ(2, 1)

+ϑ(2, 2)− ϑ(3, 2)

The following property, which is a simple transcription of
Eq. (36), therefore solves the decomposition problem (21):

Property 2 Any edge-delay functionϑ taking its values on G
can be decomposed in the form

ϑ(i, j) = [ϑ [r](i)− ϑ [s]( j)] + ϑ [cd](i, j)

For a given spanning tree, this decomposition is unique.
When ϑ is an integer-valued function, ϑ [r], ϑ [s], and ϑ [cd]
are also integer valued. In particular,

Nν(i, j) = [N [r]ν (i)− N [s]ν ( j)] + N [cd]
ν (i, j)

Note that the uniqueness of this decomposition results from
Property 1.

As illustrated in Fig. 3, ϑ [cd] is the oblique projection of ϑ

on Fcd along F . The corresponding operator is the ‘closure
operator’ C :

ϑ [cd] = Cϑ (37)

Its null space (i.e., its kernel) is the range of B:

ker C = F (38)

According to Property 2, it is also clear that E is the direct
sum of F and Fcd (see Fig. 3):

E = F ⊕ Fcd (F ∩ Fcd = {0}) (39)

Let us now denote by [C] the matrix of the closure opera-
tor expressed in the standard basis of E . The entries of the
column vector of [C] corresponding to a loop-closure point
are zero, except that of the corresponding CD component.
Clearly, that entry is equal to unity. The entries of the col-
umn vector of [C] corresponding to a spanning-tree point are
obtained via Eq. (36) which then yields

ϑ [cd](i�, j�) = −[ϑ [r](i�)− ϑ [s]( j�)]
for � = 1, . . . , nc; the other entries are zero. The delays
ϑ [r](i�) and ϑ [s]( j�) are then provided by the recursive
process in which ϑ is the characteristic function of that
spanning-tree point: ϑ vanishes on G except on that point
for which ϑ = 1; see Example 5.1. Clearly, the edges of
the closure loops are identified via the nonzero entries of the
lines of [C].
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6 Approach 2

In that approach, one concentrates on the rank defect of the
reference problem defined in the context of Eq. (21). This
rank defect is equal to nst. Indeed,

(nst + ne)− ne = nst

The simplest way to correct for this defect is to impose the
minimum constraint ‘γ = 0 on Gst’ (see Teunissen 1984).
One is then led to solve the problem of full rank

α[r](i)− α[s]( j) = ϑ(i, j), for all (i, j) ∈ Gst (40)

i.e.,

Qst Bα = Qstϑ (41)

where Qst is the operator from E onto F st induced by the
orthogonal projection (operator) of E onto F st; see Fig. 3.
Expressed in the standard bases of V0 and F st, Eq. (41) can
be written in the matrix form

[Qst][B][α] = [Qst][ϑ] (42)

where

[α] := [α[r](1) · · · α[r](m) α[s](2) · · · α[s](n)]T (43)

Denoting by αϑ the solution associated with ϑ , we therefore
have

[αϑ ] =
([Qst][B])−1 [Qst][ϑ] (44)

Clearly, [Qst][B] is obtained by removing from [B] the lines
corresponding to the loop-closure points of G. For example,
in the case of Fig. 2, the points of Gst being ordered line by
line, we have (see Remark 4.3)

[Qst][B] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 0 0 0
0 1 0 −1 0 0
0 0 1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

For clarity, the receiver and satellite components of αϑ are
denoted by ϑ [r] and ϑ [s], respectively:

[αϑ ] ≡ [ϑ [r](1) · · · ϑ [r](m) ϑ [s](2) · · · ϑ [s](n)]T (45)

The oblique projection of E onto F along Fcd is then given
by the relation (see Fig. 3)

[B][αϑ ] = [B]
([Qst][B])−1 [Qst][ϑ] (46)

As

(Bαϑ)(i, j) = ϑ [r](i)− ϑ [s]( j) (47)

The minimum constrained solution in γ is therefore given by
the formula [see Eq. (21)]

γϑ(i, j) = ϑ(i, j)− [ϑ [r](i)− ϑ [s]( j)] (48)

Setting

ϑ [cd](i, j) := γϑ(i, j) (49)

we then retrieve Eq. (36), and thereby Property 2 in particular.
The equivalence of Approaches 1 and 2 is thus established.

In Approach 2, the matrix of C is explicitly given by the
formula [see Eq. (46)]

[C] = [I ] − [B] ([Qst][B])−1 [Qst] (50)

Here, [I ] is the identity on E . The entries of the lines of [C]
corresponding to the points of Gst are a priori zero. In other
words, they must not be computed.

Remark 6.1 It can be shown that [Qst][B] is a unimodular
matrix; see Example 1 in Appendix 1 and A1.2–A1.4 (By def-
inition, a unimodular matrix is a square integer matrix with
determinant ±1.). The inverse of [Qst][B] can then be com-
puted via the integer-programming technique described in
Appendix A1.4; see Example 4 in Appendix 1. This pointed
out, the recursive process of Approach 1 provides the column
vectors of ([Qst][B])−1 in a simpler manner; see how [C] is
built in Sect. 5.

Remark 6.2 In the S-basis technique of Baarda (1973),
Teunissen (1984), and de Jonge (1998), S⊥ is then the
matrix whose column vectors form the standard basis
of F st; [Qst] is therefore the transpose of matrix S⊥:
[Qst] ≡ S⊥T . Likewise, [B] corresponds to some choice
of ‘V ’ in the notation of de Jonge. Here, the columns of
[B] ≡ V form the standard basis of F . This explicitly shows
that [C] is the S-transformation of the S-basis technique; see
Sect. 3.4 in de Jonge (1998). The ‘estimable functions of
carrier-wave ambiguities’ are therefore the CD ambiguities
N [cd]

ν (i�, j�).

Remark 6.3 To handle some graph transitions, one may be
led to change the selected spanning tree; see Remark 4.2.
Denoting by C1 and C2 the oblique projections associated
with these spanning trees, we then have C2 = C2C1. Indeed,
C1 and C2 have the same null space: F . As a result, for any
minimum constrained solution ϑ1 := C1ϑ , we have ϑ2 =
C2ϑ1. One thus passes from a minimum constrained solu-
tion to another by some S-transformation. Explicitly [see
Eq. (50)],

ϑ2 = ϑ1 − [B]
([Qst

2 ][B]
)−1 [Qst

2 ][ϑ1]
Remark 6.4 The matrix of C can also be represented in the
form

[C] = [K ]([L]T[K ])−1[L]T
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in which [K ] and [L] are matrices whose column vectors
form bases of Fcd and F⊥, respectively. To get [C], the matrix
to be inverted is then of dimension nc×nc, instead of nst×nst

in Eq. (50).

7 Canonical equations

According to Property 2, the undifferenced equation (10) can
be finally parametrized in the canonical form

��
ν,k(i, j) = [α̃[r]

φ;ν,k(i)− α̃
[s]
φ;ν,k( j)] + λν N [cd]

ν (i, j)

+ εφ;ν,k(i, j) (51)

where

α̃
[r]
φ;ν,k(i) := α

[r]
φ;ν,k(i)+ λν N [r]ν (i) (52)

α̃
[s]
φ;ν,k( j) := α

[s]
φ;ν,k( j)+ λν N [s]ν ( j) (53)

Concerning the phase, α̃
[r]
φ;ν,k, α̃

[s]
φ;ν,k , and N [cd]

ν are the ‘esti-
mable functional variables’ of the problem. In particular,
according to Eqs. (6), (12), (14) and (53), the estimable phase
satellite-clock error is then the frequency-dependent phase
satellite-clock error biased by:

– a tropospheric satellite delay;
– an ionospheric satellite delay;
– an initial satellite phase;
– an integer satellite ambiguity.

The canonical form of the undifferenced code equation is
nothing but Eq. (15):

P�
ν,k(i, j) = [α[r]p;ν,k(i)− α

[s]
p;ν,k( j)] + εp;ν,k(i, j) (54)

From Eqs. (9), (17), and (19), the estimable code satellite-
clock error is then the original frequency-dependent code
satellite-clock error biased by:

– a tropospheric satellite delay;
– an ionospheric satellite delay.

Remark 7.1 When one is not interested in the receiver func-
tional variables α̃

[r]
φ;ν,k and α

[r]
p;ν,k , one may be led to consider

the single-difference (SD) equations induced by the ‘canoni-
cal undifferenced equations’ (51) and (54). For example, for
each frequency, by spanning the GNSS grid G line by line
(see Fig. 2), the phase equation (51) then yields (ne − nr)

SD equations in which the receiver biases α̃
[r]
φ;ν,k(i) no longer

appear. The CD ambiguities of course remain involved in
these ‘canonical SD equations.’ For quality control, it is
however preferable to work with the canonical undifferenced
equations. Indeed, in the DIA methods (see, e.g., Lannes and
Gratton 2009), most of the outliers can then be identified
more directly.

8 Solution of the problem: survey

For our present purposes, let us consider an observational
period [1, k] where no receiver–satellite signal appears or
disappears. Over that period, the problem to be solved in the
LS sense is then governed by a system of linear equations of
the form
∣∣∣∣∣∣∣∣∣

A1u1 + Bv = b1

A2u2 + Bv = b2
...

Akuk + Bv = bk

(55)

where Ak and B are linear operators. With regard to the
canonical equations (51) and (54), the functional variables
α̃
[r]
φ;ν,k, α̃

[s]
φ;ν,k, α

[r]
p;ν,k , and α

[s]
p;ν,k are then the components of

the local variable uk . When one works in canonical SD mode,
the receiver pseudo-clock variables no longer appear; see
Remark 7.1. In both cases, the entries of the global variable v

are the integer CD ambiguities N [cd]
ν (i�, j�).

The number of observations must be greater than or equal
to the number of unknown parameters; this is a necessary
condition for solving the problem. At epoch k, with nν car-
rier waves, we must therefore have, with regard to Eqs. (51)
and (54),

2knνne ≥ 2knνnst + nνnc

i.e., since nc = ne − nst [see Eq. (28)],

2k ≥ 1

This condition is therefore always satisfied. In fact, the pre-
liminary parametrization performed in Sect. 2 was completed
in Sect. 7 so that the problem is then of full rank. Equa-
tion (55) can then be solved in the LS sense, and recursively,
by using for example the QR method (see Lannes and Gratton
2009). Other techniques can of course be implemented (see,
e.g., de Jonge 1998). At each epoch k, one thus obtains,
in particular, the float ambiguity v̂k and the Cholesky fac-
tor Rk of the inverse of its variance–covariance matrix. This
upper-triangular matrix is then decorrelated via appropriate
techniques based on the LLL algorithm (see, Lannes and
Gratton 2009), or on the Lambda method (see Teunissen
1995). The integer ambiguity solution v̌k is then obtained by
using classical integer-programming techniques. Once v̌k has
been fixed to some v̌ (“ v̌k → v̌ ”), and v̌ has been validated
(see Verhagen and Teunissen 2006), the problem can be com-
pletely solved. We then have v̌ν = N [cd]

ν for all ν. The corre-
sponding estimate of the real-valued functional variable uk is
then obtained. For clarity, the latter is denoted by ǔk . In the
following section, the estimates of α̃

[s]
φ;ν,k( j) and α

[s]
p;ν,k( j)

thus obtained, α̌[s]
φ;ν,k( j) and α̌

[s]
p;ν,k( j), are simply referred to

as the satellite pseudo-clock biases.
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9 Related PPP equations

The satellite pseudo-clock biases α̌
[s]
φ;ν,k( j) and α̌

[s]
p;ν,k( j) for

j �= 1 can be broadcasted to the network users for their pre-
cise point positioning (PPP). As clarified in this section, the
form of the equations to be solved by the user is then similar
to that of the traditional PPP equations. The corresponding
standard approaches are described in Zumberge et al. (1997),
Ge et al. (2008), and Bertiger et al. (2010).

Let us denote by rι the user receiver. According to Eqs. (5)
and (10), the user phase equation is the following:

�ν,k(ι, j) = ρk(ι, j)+ [α[r]
φ;ν,k(ι)− α

[s]
φ;ν,k( j)]

+ λν Nν(ι, j)+ εφ;ν,k(ι, j) (56)

Concerning the code, we then have

Pν,k(ι, j) = ρk(ι, j)+ [α[r]p;ν,k(ι)− α
[s]
p;ν,k( j)]

+ εp;ν,k(ι, j) (57)

The receiver–satellite range can be linearized in the form

ρk(ι, j) = ρ0
k (ι, j)+

3∑
p=1

c(p)
k (ι, j) ξ

(p)
ι,k (58)

where ρ0
k (ι, j) is the nominal value of ρk(ι, j); ξ (p)

ι,k is the pth
(position) increment of the user receiver at epoch k. Note that
c(p)

k (ι, j) is a direction-cosine function [see, e.g., Eq. (14) in
Lannes and Gratton (2008)].

Taking into account Eq. (53), we have (with regard to the
selected spanning tree of the GNSS network graph)

∣∣∣∣∣∣
α
[s]
φ;ν,k( j) � α̌

[s]
φ;ν,k( j)− λν N [s]ν ( j)

α
[s]
p;ν,k( j) � α̌

[s]
p;ν,k( j)

(59)

We are then led to set
∣∣∣∣∣∣
�

(ι)
ν,k( j) := �ν,k(ι, j)− ρ0

k (ι, j)+ α̌
[s]
φ;ν,k( j)

P(ι)
ν,k( j) := Pν,k(ι, j)− ρ0

k (ι, j)+ α̌
[s]
p;ν,k( j)

(60)

and

N (ι)
ν ( j) := Nν(ι, j)+ N [s]ν ( j) (61)

Equations (56) and (57) then yield the PPP equations

�
(ι)
ν,k( j) =

3∑
p=1

c(p)
k (ι, j) ξ

(p)
ι,k + α

[r]
φ;ν,k(ι)

+ λν N (ι)
ν ( j)+ ε̄φ;ν,k(ι, j) (62)

P(ι)
ν,k( j) =

3∑
p=1

c(p)
k (ι, j) ξ

(p)
ι,k + α

[r]
p;ν,k(ι)

+ ε̄p;ν,k(ι, j) (63)

As α̌
[s]
φ;ν,k and α̌

[s]
p;ν,k are estimates of α̃

[s]
φ;ν,k and α

[s]
p;ν,k respec-

tively, ε̄φ;ν,k and ε̄p;ν,k differ from εφ;ν,k and εp;ν,k , respec-
tively. To solve the problem, the variance covariance matrices
of ε̄φ;ν,k and ε̄p;ν,k are then to be properly taken into account.

Estimates of the increments ξ
(p)
ι,k can thus be obtained.

Remark 9.1 The form of the PPP equations (62) and (63)
is similar to that of the standard PPP equations. Here, how-
ever, in the case of relatively small networks, the tropospheric
and ionospheric delays no longer appear explicitly. In fact,
they are taken into account via the definitions of �

(ι)
ν,k( j)

and P(ι)
ν,k( j); see Eqs. (6), (9), (12), (14), (17), (19), (53),

and (60). Clearly, for the PPP user, the network plays the role
of a calibrator; see Remark 3.1. This pointed out, we chose
for small networks only because of the ease with which our
approach can then be presented and explained.

10 Connection with the DD approach

We first introduce the notion of DD operator (Sect. 10.1). We
then analyze the relationship between the DDs and the CDs
(Sect. 10.2). In particular, we then show that the information
provided by a maximum set of independent DDs may not
reach that of a complete set of CDs. The methods based on
the CD approach are therefore preferable to those deriving
from the DD approach. The related points are specified in
Sects. 10.3 and 10.4.

10.1 Notion of DD operator

The usual way of getting rid of the receiver and satellite biases
is to form double differences. Given some ϑ in E , the latter
are of the form

[ϑ(i1, j1)− ϑ(i1, j2)] − [ϑ(i2, j1)− ϑ(i2, j2)]
= ϑ(i1, j1)− ϑ(i1, j2)+ ϑ(i2, j2)− ϑ(i2, j1)

Indeed, we then have

[α[r](i1)− α[s]( j1)] − [α[r](i1)− α[s]( j2)]
+[α[r](i2)− α[s]( j2)] − [α[r](i2)− α[s]( j1)] = 0

Clearly, the corresponding loop of order 4 is character-
ized by the points (i1, j1) and (i2, j2) of G. The maximum
number of such loops, ndd, depends on the scenario under
consideration. For example, in Scenario 1 (see Fig. 1), we
have ndd = 3. These loops are then characterized by the
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Fig. 4 Scenario 2. In the scenario considered here, G includes 15
points: ne = 15. The number of loops of order 4, and thereby, the
number of DDs is equal to 8: ndd = 8. The maximum number of inde-
pendent DDs proves then to be equal to 5: nm

d = 5; see text. The number
of CDs is then equal to 6: nc = 15− 9; for further details concerning
the CD approach, see Fig. 5. Here, nm

d is therefore strictly less than nc:
the information provided by a maximum set of independent DDs does
not reach that of a complete set of CDs. In this scenario, this property
results from the fact that no loop of order 4 includes edge (r1, s3). In
the traditional DD approach, the data associated with this edge are not
used

following pairs of points:

[(1, 1), (2, 4)]
[(1, 3), (3, 4)]
[(2, 2), (3, 4)]

Let us order the points of G line by line. The matrix of the
operator from E into R

3 that provides all the DDs is then the
following:

[D] =
⎡
⎣

1 0 −1 −1 0 1 0 0 0
0 1 −1 0 0 0 0 −1 1
0 0 0 0 1 −1 −1 0 1

⎤
⎦

By definition, such a matrix has ne columns (here, 9). In this
case, the lines of [D] are linearly independent. One then says
that the DDs thus defined are linearly independent. Here,
the maximum number of independent DDs is therefore equal
to 3:

nm
d = 3

Scenario 1 therefore corresponds to a situation where
nm

d = nc. This is not always the case.
To illustrate this point in an elementary manner, let us

consider the scenario of Fig. 4: Scenario 2; ndd is then equal
to 8. The following pairs of points characterize these loops:

[(1, 1), (2, 4)]
[(1, 1), (5, 4)]
[(2, 1), (5, 2)]
[(2, 1), (5, 4)]
[(2, 2), (4, 4)]
[(2, 2), (5, 4)]
[(3, 2), (6, 3)]
[(4, 2), (5, 4)]

The matrix [D] of the operator that provides all the DDs
has then 8 lines and 15 columns:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0 0 −1 0 1 0 0
0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It is easy to check that the DDs defined by this matrix are not
linearly independent: they do not form a ‘free set.’ In fact, as
clarified below, nm

d is then equal to 5.
To find a maximum set of independent DDs, several meth-

ods can be implemented. Some of these appeal to standard
algebraic techniques (see, e.g., Björck 1996). Others are
based on Boolean methods (see Saalfeld 1999). Applied to
the complete matrix [D], the founding algorithm described
in Appendix A1.3 also provides such a set; see Example 3 in
Appendix A1.3.

In the special case under consideration (Scenario 2), the
following loops of order 4 form a maximum set of indepen-
dent DDs:

[(1, 1), (2, 4)]
[(1, 1), (5, 4)]
[(2, 1), (5, 2)]
[(3, 2), (6, 3)]
[(2, 2), (4, 4)]

Any matrix [D] that provides a set of independent DDs is
said to be a DD matrix. The number of lines of [D] is then
denoted by nd. We therefore have

nd ≤ nm
d ≤ ndd (64)

In the DD approaches, it is therefore recommended to work
with a maximum set of independent DDs. For example, with
regard to Scenario 2, the following operator provides such a
set (see Example 3 in Appendix A1.3):

[D] =

⎡
⎢⎢⎢⎢⎣

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

According to basic notions of linear algebra, nd columns
of [D] at most can be linearly independent: the rank of D
(the dimension of its range) is equal to nd. The dimension of
the null space of D is therefore equal to ne − nd. We thus
have [see Eqs. (28), (29), and (33)]

dim(ker D) = (nst + nc)− nd

= dim F + (nc − nd) (65)
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Furthermore, D annihilates the vertex biases: Dβ = 0 for
any β in F ; we therefore have

F ⊆ ker D (F = BV0 = ker C) (66)

Consequently, dim F ≤ dim(ker D). It then follows from
Eq. (65) that

nc − nd ≥ 0 (67)

The following inequality therefore holds:

nc − nm
d ≥ 0 (68)

For example, in Scenarios 1 and 2, we respectively have
nm

d = nc and nm
d < nc. This explicitly shows that the infor-

mation provided by a maximum set of independent DDs may
not reach that of a complete set of CDs; see, for example,
Figs. 4, 5, and 7. In that case, as F is a subspace of the null
space of D, double differencing annihilates more than the
pseudo-clock biases.

10.2 The DD–CD relationship

Let Dcd be the operator from Fcd into R
nd induced by D. Its

matrix, [Dcd] includes nd lines and nc columns. This matrix
is obtained by removing from [D] the columns correspond-
ing to the spanning-tree points of G. The columns of [Dcd]
are therefore associated with the loop-closure points ordered
line by line. For example, in Scenario 2 (see Sect. 10.1), we
have

[Dcd] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 −1 0 0 0 1
−1 0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

Let us now denote by K the null space of Dcd. From the
analysis developed in Sect. 10.1,

dim K = nc − nd (69)

The rank of Dcd is equal to nd. The range of Dcd is therefore
defined by a set of nd independent column vectors of [Dcd].
As specified in Appendix A1.3, the best way of finding such
a set is to apply elementary unimodular matrices on the left-
hand side of [Dcd]. For example, in Scenario 2, we then get
the following matrix:
⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 −1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

The independent column vectors thus identified define a set of
nd = 5 loop-closure points. Here, this set includes the follow-
ing points (see Fig. 5): c1 = (2, 4), c2 = (3, 3), c3 = (4, 4),

Fig. 5 Selected spanning tree for Scenario 2. This figure corresponds
to the CD approach of Scenario 2; see Fig. 4. Here, the selected span-
ning tree is built by spanning the points of G line by line. The points
of Gst are shown as black dots. The red ones are the corresponding
loop-closure points; see Fig. 2. With regard to the selected spanning
tree, we then have three loops of order 4 and three loops of order 6.

c4 = (5, 2), and c5 = (5, 4). Let us denote by H the subset
of integers characterizing the order of these points in the list
of the loop-closure points. Here,

H = {1, 2, 3, 4, 5}
The remaining nc − nd loop-closure points define a set of
integers denoted by L. Here, this set includes only one ele-
ment:

L = {6}
Let us denote by e� the characteristic function of point c�:

e�(i, j) :=
{

1, if (i, j) = c�;
0, otherwise

(70)

By definition, H is the subspace of Fcd generated by the e�s,
� lying in H. Likewise, L denotes the subspace generated by
the e�s, � lying in L. By construction, L is the orthogonal
complement of H in Fcd; see Fig. 6.

The dimension of Dcd H, nd, is equal to that of H . The
operator of H into R

nd induced by Dcd, Dcd
H , is therefore

invertible. More precisely (see Appendix A1.4), the matrix
of this operator is unimodular. For example in Scenario 2,
we have

[Dcd
H ] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 −1 0 0 0
−1 0 1 0 0

⎤
⎥⎥⎥⎥⎦

and (see Example 5 in Appendix A1.4)

[Dcd
H ]−1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 −1 0
1 0 0 0 1
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦
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Fig. 6 Decomposition of Fcd induced by the DD operator D. In
this geometrical representation of the CD space Fcd, K is the null
space of Dcd, the operator from Fcd into R

nd induced by D.
As specified in the text, H is a ‘trivial subspace’ of Fcd for
which the following property is satisfied: the operator from H
into R

nd induced by Dcd is invertible. Moreover, its matrix [Dcd
H ]

is unimodular. Via ϑd
H , the DD vector defines the corresponding

CD vector up to a vector in K ; see Eqs. (71)–(73). Here, L is
the orthogonal complement of H in Fcd; K is isomorphic to L .
For further details, see Properties 3, 4 and Eq. (77).

Let us now denote by θ [dd] the DD vector of some ϑ in E :

θ [dd] := Dϑ = Dϑ [cd] (θ [dd] ∈ R
nd ) (71)

Setting

ϑ
[d]
H := (Dcd

H )−1θ [dd] (72)

we have

Dϑ
[d]
H = θ [dd] (73)

As illustrated in Fig. 6, ϑd
H is therefore the oblique projection

of ϑ [cd] on H along K . As a result, the oblique projection
of ϑ [cd] on K along H is the vector

ϑd
K := ϑ [cd] − (Dcd

H )−1θ [dd] (74)

We thus have the following property (see Fig. 6):

Property 3 Any CD function can be decomposed in the form

ϑ [cd] = ϑd
H + ϑd

K

where

ϑd
H := (Dcd

H )−1 Dϑ [cd]

For a given H, this decomposition is unique. As a corollary,
Fcd is the direct sum of H and K .

Note that this property, which completes Property 2, is of the
same type; compare Fig. 6 with Fig. 3.

The DD vector defines the corresponding CD vector up to
a vector of K . In the special case where nd is equal to nc, K is

reduced to {0}; then H = Fcd and ϑ [cd] = ϑd
H . The DD vec-

tor then defines the CD vector without any ambiguity [see
Eq. (72)]:

ϑ [cd] = (Dcd)−1θ [dd] (nd = nc) (75)

For example, in Scenario 1,

[Dcd] =
⎡
⎣

1 0 0
0 −1 1
−1 0 1

⎤
⎦ , [Dcd]−1 =

⎡
⎣

1 0 0
1 −1 1
1 0 1

⎤
⎦

In the general where nd is strictly less than nc, K can easily
be characterized. We now specify this point.

Let us denote by Z(Fcd) the CD lattice. Clearly, {e�}nc
�=1

is the standard basis of this integer lattice. Likewise, define
Z(H) and Z(L) as the Z-lattices with bases {e�}�∈H and
{e�}�∈L, respectively. By construction, Z(Fcd) is the direct
sum of Z(H) and Z(L):

Z(Fcd) = Z(H)⊕ Z(L) (76)

For any � ∈ L, we now define f� as the oblique projection
of e� on K along H (see Fig. 6). According to Property 3,
we have

f� := e� − (Dcd
H )−1 De� (� ∈ L) (77)

As e� is the projection of f� on L (see Fig. 6), and {e�}�∈L is
a basis for L , { f�}�∈L is a basis for K . Clearly, K is
isomorphic to L .

In the following property, which can be regarded as a cor-
ollary of Property 3, Z(K ) is the Z-lattice with basis { f�}�∈L.
For example, in Scenario 2, Z(K ) is the one-dimensional
Z-lattice generated by the CD vector whose components are
the six entries of the following column matrix:

[ f6] :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 −1 0
1 0 0 0 1
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0
0
0
1
0

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

Property 4 The CD lattice Z(Fcd) is the direct sum of the
integer lattices Z(H) and Z(K ):

Z(Fcd) = Z(H)⊕ Z(K )

In the general case where nd is strictly less than nc, we
therefore have, from Property 3 and Notation (73),

N [cd]
ν = (Dcd

H )−1 N [dd]
ν +

∑
�∈L

N [K ]
ν;� f� (78)

for some ambiguities N [K ]
ν;� in Z. These nc−nd integer ambi-

guities are referred to as the K -ambiguities. Clearly, N [dd]
ν

includes nd components: the integer DD ambiguities N [dd]
ν;q .
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Fig. 7 Scenario 3. This example corresponds to the scenario defined
in Table 3.2 of de Jonge (1998): m = 14, n = 22, and ne = 86. The
spanning tree of the corresponding graph is built by spanning the points
of G line by line; its 35 points are shown as black dots. The red ones
are the corresponding loop-closure points; nc = 86 − 35 = 51. For
each frequency, we then have 51 estimable functions of carrier-wave
ambiguities, i.e., 51 CD ambiguities. With regard to the selected span-
ning tree, 29 CDs are of order 4, 14 are of order 6, 3 are of order 8,

3 are of order 10, 1 is of order 12, and 1 is of order 14. In this scenario,
the number of DDs is equal to 235: ndd = 235. The maximum number
of independent DDs is then equal to 47: nm

d = 47. The information
provided by these DDs does not reach that of the CDs. More precisely,
these DDs define the CD-ambiguity vector up to a vector of K ; see
Fig. 6; K is of dimension nc − nm

d , i.e., here 4. Note that no loop of
order 4 includes points (4, 18), (10, 7), and (10, 18). For further details,
see text

To illustrate our analysis in a more realistic manner, let
us consider the scenario defined in Table 3.2 of de Jonge
(1998): Scenario 3; see Fig. 7. In that case, nc = 51 and
nm

d = 47. The dimension of K is then equal to 4; L then
includes four integers; more precisely, L = {31, 32, 33, 40}.
The basis vectors of K , the vectors f31, f32, f33, and f40,
are then explicitly determined via Eq. (77). Clearly, we then
have four K -ambiguities: N [K ]

ν;31, N [K ]
ν;32, N [K ]

ν;33, and N [K ]
ν;40.

10.3 Differenced methods

When the network master is not interested in the pseudo-clock
biases, the methods based on the DD- or CD-differenced
observational equations can be implemented. The position
of some receivers (for example) can thus be refined.

When nm
d = nc, the sets of DD and CD ambiguities thus

obtained are equivalent; see Eq. (75). The information pro-
vided by the CD-differenced observational data is then the
same as that provided by the DD-differenced observational
data.

When nm
d < nc, this is no longer the case: the information

provided by the CD-differenced observational data is bet-
ter than that provided by the DD-differenced observational
data. The CD-differenced approach is then preferable; see
for example Fig. 7.

10.4 Undifferenced methods

As specified in Sect. 9, the satellite pseudo-clock variables
are of interest for precise point positioning. The methods
based on the canonical undifferenced equations are then
strongly recommended; see Sect. 7, Remark 7.1 and Sect. 8.
This pointed out, if one wants to refer, somehow, to the DD
approach, one may proceed in two other ways. We now
describe the corresponding algebraic approaches.

10.4.1 DD parametrization

In the general case where nm
d is strictly less than nc, the

canonical phase equation (51) can be parametrized in terms
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of DD and K -ambiguities. In Sect. 8, the entries of the
global variable v are then the DD ambiguities N [dd]

ν;q and the

K -ambiguities N [K ]
ν;� . The matrix B of Eq. (55) is then built

on the grounds of Eq. (78), i.e.,

N [cd]
ν = (Dcd

H )−1 N [dd]
ν +

∑
�∈L

N [K ]
ν;� f� (nm

d < nc)

In the case where nm
d is equal to nc, this equation reduces

to the relation [see Eq. (75)]

N [cd]
ν = (Dcd)−1 N [dd]

ν (nm
d = nc)

The canonical phase equations are then parametrized in terms
of DD ambiguities only.

10.4.2 DD initialization

In the usual DD approach, one works with the DD-
differenced observational equations. Once the DD ambigui-
ties have been fixed and validated, the CD ambiguity function
(Dcd

H )−1 N [dd]
ν or (Dcd)−1 N [dd]

ν is also fixed and validated.
In the general case where nm

d is strictly less than nc, the
K -ambiguities then remain to be fixed. For each frequency ν,
the matrix of the operator B of Eq. (55) then includes nc−nm

d
columns, one for each � ∈ L. Up to the factor λν , the entries
of the CD phase part of the �th column are the components
of the vector f� defined in Eq. (77). For nν carrier waves,
the dimension of the ambiguity problem to be solved is then
reduced to nν(nc − nm

d ); see Fig. 7 and Sect. 8.
In the special case where nm

d is equal to nc, no other ambi-
guity is to be fixed. The satellite pseudo-clock biases are then
immediately obtained.

11 Concluding comments

The first objective of this paper was to show that the alge-
braic structures of some parametrized GNSS equations share
a common feature with those of the phase calibration prob-
lems in Fourier synthesis (This Fourier synthesis technique is
used in astronomy for imaging brightness sources at high res-
olution; see Lannes 2005). In fact, as specified in Remark 3.1,
phase calibration problems are embedded in the processing
of GNSS signals. The related key structure is that of Eqs. (21)
and (25). In both cases, the phase data are defined on the edges
of an observational graph, modulo λ or 2π ; see Eq. (23).
Furthermore, these data are blurred by phase biases defined
on the vertices of the graph. The algebraic graph theory and
the algebraic number theory are thereby basically involved
in the statement and the solution of the corresponding prob-
lems; see Sects. 4, 5, 7, and 8.

In astronomy, to get rid of the phase biases, ‘closure oper-
ations’ are performed along the loops of the observational
graph (strictly speaking along the edges of the cycles defined

by an arbitrary spanning tree of this graph). This is why the
corresponding Fourier techniques have led to the concept of
phase closure imaging (PCI). Similar operations were intro-
duced in GNSS. For example, double differencing consists
in performing closure operations along loops including four
edges.

More generally, the estimable functions of carrier-phase
ambiguities (for example) are ‘closure-delay’ (CD) ambi-
guities associated with loops including an even number of
edges; see Sect. 5 and Fig. 2. Clearly, this GNSS terminol-
ogy derives from that used in PCI. In the related approach,
referred to as Approach 1, Eq. (21) is regarded as an algebraic
decomposition of a function taking its values on the edges of
the GNSS graph; see Property 2.

The corresponding GNSS analysis had been performed,
independently, via the S-basis technique developed by
Baarda (1973), Teunissen (1984), and de Jonge (1998). In that
approach, referred to as Approach 2 (Sect. 6), the idea is then
to correct for the rank defect of Eq. (21). As illustrated in
Fig. 3, the edge-delay space, as it is defined in Sect. 4.3,
can be canonically decomposed into two components: the
bias-delay space and the CD space. The corresponding prop-
erty (Property 2) did not explicitly appear in Approach 2.
In fact, as revealed by the analysis developed in Sects. 5
and 6, this property was simply hidden. The equivalence of
Approaches 1 and 2 is therefore complete (However note that
in Approach 1, the closure operator is built in a simpler man-
ner; see Remark 6.1.). From an epistemological point of view,
this equivalence had to be established. This is now done.

As already pointed out, the notion of closure delay can
be regarded as a generalization of that of double difference
(DD). The reader might therefore be surprised that CD ambi-
guities appear in the canonical undifferenced equation (51);
and likewise for the canonical SD equations; see Remark 7.1.
In fact, this is a simple consequence of Property 2.

A related application, which corresponded to the second
objective of this paper, concerned the definition of the clock
information to be broadcasted to the network users for their
precise point positioning (PPP); see Sect. 9. It was then
shown that this positioning can be achieved by simply hav-
ing access to some satellite pseudo-clock biases. For simplic-
ity, the study was restricted to relatively small networks. For
example, as far as the phase is concerned, these biases then
include five components (see Sect. 7): a frequency-dependent
satellite-clock error, a tropospheric satellite delay, an iono-
spheric satellite delay, an initial satellite phase, and an inte-
ger satellite ambiguity. The form of the PPP equations to be
solved by the network user is then similar to that of the tra-
ditional PPP equations; see Eqs. (62), (63) and Remark 9.1.

As soon as the CD ambiguities are fixed and validated (an
operation which can be performed in real time via appropri-
ate decorrelation techniques; see Sect. 8), estimates of these
float biases can be immediately obtained. No other ambi-
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guity is then to be fixed. The satellite pseudo-clock biases
can therefore be obtained in real time. Note that this is not
the case for the satellite-clock biases (see, e.g., Bertiger et
al. 2010; Dow et al. 2009). In fact, extracting the satellite-
clock biases and the satellite ambiguities from the satellite
pseudo-clock biases requires some additional information or
constraint, such as ‘statistical bounds’ on the clock biases
(for example).

The third objective of this paper was to make the link
between the CD approach and the GNSS methods based on
the notion of double difference. As shown in Sect. 10, the
information provided by a maximum set of independent DDs
may not reach that of a complete set of CDs; see for example
Fig. 7. To get the most from the GNSS data, it is therefore
preferable to work with the canonical undifferenced equa-
tions, or with the CD-differenced equations if one is not inter-
ested in the pseudo-clock biases; see Sect. 10.3. This was
already known in the GNSS community (de Jonge 1998),
but the corresponding defect of the DD approach had not
been yet completely analyzed. From this point of view, one
of the main results of our contribution concerns the DD–CD
relationship (Sect. 10.2).

The maximum number of independent DDs, nm
d , is less

than or equal to nc, the number of CDs; see Eq. (68). In
the special case of the scenarios for which nm

d is equal to nc,
there exists a unimodular matrix that transforms the DD (col-
umn) vector into an equivalent CD vector. Once the DD
ambiguities have been fixed and validated, the correspond-
ing constraints can therefore be imposed in the undifferenced
equations in an algebraic manner; see Sect. 10.4. To get
the PPP information, it is therefore no longer required to
introduce DD-ambiguity constraint equations as this is done
(for instance) in the approach developed by Ge et al. (2005,
2006).

In the general case where nm
d is strictly less than nc, the

DD ambiguity vector defines the CD ambiguity vector up to
a vector in the null space of the DD operator restricted to the
CD space; see Fig. 6. As clarified via Properties 3, 4, and
Appendix 1, appropriate integer-programming algorithms
allow the corresponding integer lattice to be completely iden-
tified. The DD ambiguities can thereby be still used as input
data in the canonical phase equations. The integer-ambiguity
problem that remains to be solved is then of smaller size; see
Sect. 10.4.2.

The founding algorithm presented in Appendix 1 can also
be used to find a maximum set of independent DDs. This is
another interesting spin-off of our contribution; for instance,
see Example 3 in Appendix A1.3, and compare with Saalfeld
(1999).
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Appendix 1: On some integer matrices

In this appendix, we consider a particular class M of integer
matrices. An [m×n]matrix [A] lies in M if its entries (i.e., its
matrix elements ai, j ) are equal to±1 or 0. For the objectives
of the paper, we also introduce two subclasses of M: M1

and M2 (Appendices A1.1 and A1.2, respectively). A related
founding algorithm is then presented (Appendix A1.3).
Appendix A1.4 is finally devoted to the study of an important
special case.

A1.1. Class M1

Let [A]be some matrix inM. Now, suppose that for some i, i ′
and j , we have either ai, j = ±1 with ai ′, j = ∓1 (Case 1), or
ai, j = ±1 with ai ′, j = ±1 (Case 2). We then denote by [S]
the unimodular matrix that reduces ai ′, j to 0. In Case 1, [S] is
the unimodular matrix [S+] that adds the entries of line i
to the corresponding entries of line i ′. In Case 2, [S] is the
unimodular matrix [S−] that substracts the entries of line i
from the corresponding entries of line i ′. Note that when
ai, j = −ai ′, j for all j, [S+] sets to 0 all the elements of line i ′.
Likewise, when ai, j = ai ′, j for all j, [S−] annihilates line i ′.

By definition, M1 is the class of matrices [A] for which
the following property holds: under successive operations
with type [S], [A] remains in M.

Example 1 Let V be a set including n vertices:
V := {v1, v2, . . . , vn}

Design a matrix [A] of M as follows. For each line,
choose two distinct vertices of V: vp and vq . Then set
ai,p = 1, ai,q = −1, and ai, j = 0 for j �= p and j �= q. Each
line of [A] is thus associated with a directed edge (vp, vq) of
some graph. When two distinct edges (vp, vq) and (vp′ , vq ′)
share only one vertex, the action of either S+ or S− amounts
to associating another edge with line i ′. As a result, [A]
lies in M1. This shows, in particular, that the matrices [B]
and [Qst B] of Sect. 6 lie in M1.

Example 2 Let us consider some scenario grid G; see, for
instance, that defined in Fig. 7. A rectangle whose vertices
are four points of G forms a loop of order 4. As specified in
Sect. 10.1, such loops are involved in the definition of double
differences. More generally, one may design loops of order
2m, with only two points per line or per column, in an alter-
nate manner. For example, in Fig. 7, the following loop is of
order 10:
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(1, 3)→ (1, 12)

↑ ↓
(2, 1)→ (2, 3) ↓
↑ ↓
↑ (3, 12) → → (3, 16)

↑ ↓
↑ (6, 14)← (6, 16)

↑ ↓
(8, 1)← ← ← ← (8, 14)

We now design a matrix [A] of M as follows. Each line of [A]
is associated with some loop of even order. Along that loop,
the value 1 or −1 is allocated to the successive points of G,
in an alternate manner. The points of G being ordered line
by line, we thus form the matrix of a ‘multi-difference oper-
ator’ which annihilates the vertex biases. Such a matrix lies
in M1. Indeed, when two loops of G with order 2m and 2m′
share n points, the action of either [S+] or [S−] amounts to
associating another loop with line i ′. That loop is of order
2(m+m′ −n). For example, two loops of order four sharing
only one point thus yield a loop of order six. It is also clear
that if some column(s) of such a matrix is (are) removed,
the matrix thus obtained also lies in M1. It then follows, in
particular, that the matrices [D], [Dcd] and [Dcd

H ] introduced
in Sects. 10.1 and 10.2 lie in M1.

A1.2. Class M2

For each i ≤ m, we denote by ji the smallest index j for
which ai, j is equal to ±1. If ai, j is equal to 0 for all j ≤ n,
we set ji = n + 1.

Matrix [A] lies in M2 if [A] satisfies the following two
conditions:

(i) When ji ≤ n, then ai, ji = 1.
(ii) When ji < n, then ji+1 is strictly greater than ji .

When ji = n, then ji ′ = n + 1 for i ′ > i .

Examples of such matrices are to be found in Appen-
dix A1.3.

A1.3. Founding algorithm

Property For any [A] in M1, there exists a unimodular
matrix [Z ] such that [Z ][A] lies in M2.

The following algorithm, which yields [Z ][A] and [Z ]
explicitly, can be regarded as a proof of this property.

Step 0 Initialization
Set i0 = 1, j0 = 1, and [Z ] = [Im]where [Im] is the [m×m]
identity matrix.

Step 1 Define the column j0 to be processed
While ai, j0 = 0 for all i ≥ i0 with j0 < n, set j0

set= j0+ 1. If
ai, j0 = 0 for all i ≥ i0 with j0 = n, terminate the process.

Step 2 If need be, perform some line permutation
Denote by i1 the smallest integer i ≥ i0 for which ai1, j0 is
equal to ±1. When i1 is not equal to i0, permute lines i0

and i1. The corresponding operation can be written in the
form [A] set=[P][A]where [P] is a permutation matrix, a triv-
ial unimodular matrix. Update [Z ] : [Z ] set=[P][Z ].
Step 3 If need be, set ai0, j0 = 1

If ai0, j0 = −1, set [A] set=[S][A] and [Z ] set=[S][Z ], where
[S] is the trivial unimodular matrix that changes the sign of
the entries of line i0.

Step 4 If need be, set to 0 the lower part of column j0
For all i > i0, if ai, j0 = ±1, then combine lines i and i0

so that ai, j0 = 0. In other terms, set [A] set=[S∓][A], and

update [Z ] consequently: [Z ] set=[S∓][Z ].
Step 5 Termination test
If i0 = m or j0 = n, terminate the process. Otherwise, set
i0

set= i0 + 1, j0
set= j0 + 1, and go to Step 1.

Example 3 Consider the matrix [D] of the operator that pro-
vides all the DDs of Scenario 2 (see Sect. 10.1):
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 −1 0 1 0 0
0 0 0 1 −1 0 0 0 0 0 −1 1 0 0 0
0 0 0 1 0 −1 0 0 0 0 −1 0 1 0 0
0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By construction (see Example 2), this matrix lies in M1. The
matrix [Z ][D] provided by the founding algorithm is then the
following:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −1 0 0 0 0 −1 0 1 0 0
0 0 0 0 1 −1 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Clearly, the rank of this matrix (the dimension of its range),
which is also that of [D], is equal to 5. The rank of its trans-
pose is also equal to 5. More specifically, the first five lines,
which are linearly independent, correspond to the maximum
set of independent DDs given in Sect. 10.2. In fact, that set
was obtained by applying to the list of all the DD loops, the
successive permutations defined at Step 2 of the algorithm.
Therefore, there exists some unimodular matrix [Z ], built
without any permutation, which transforms the DD matrix
of this maximum set into the matrix formed by the first five
lines of the previous M2 matrix (The DD matrix of this max-
imum set is displayed in Sect. 10.1).
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A1.4. Unimodular matrices of M1

Let us consider the special case where [A] is an invertible
[n × n]-matrix of M1. Then there exists some unimodular
matrix Z such that [Z ][A] is an upper-triangular matrix [U ]
with rank n and determinant 1; see Appendix A1.3. The deter-
minant of A is then the same as that of [Z ]:±1; [A] is there-
fore unimodular; its inverse is then given by the relation

[A]−1 = [U ]−1[Z ]
Indeed, ([U ]−1][Z ])[A] = [U ]−1([Z ][A]) = [U ]−1[U ] =
[In]. In this case, the j th column of [A]−1 is therefore
obtained from the j th column of [Z ] by back-substitution.

Example 4 Consider the matrix [A] ≡ [Qst][B] introduced
in Sect. 6 for Scenario 1 (see Remark 4.3):

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 0 0 0 −1 0
1 0 0 0 0 −1
0 1 0 0 0 0
0 1 0 −1 0 0
0 0 1 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Then

[U ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

[Z ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 1 −1 0
1 −1 0 0 0 0
1 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Hence,

[A]−1 = [U ]−1[Z ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 −1 1
0 0 0 1 −1 0
1 −1 0 0 0 0
1 0 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Example 5 Consider the matrix [A] ≡ [Dcd
H ] introduced in

Sect. 10.2:

[A] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 −1 0 0 0
−1 0 1 0 0

⎤
⎥⎥⎥⎥⎦

In that case, [U ] is the identity matrix, and

[Z ] =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 0 −1 0
1 0 0 0 1
0 0 1 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦

It then follows that [A]−1 is equal to [Z ].
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