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Abstract

GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable tech-
nique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier
phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of
the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method
that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the
multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly
improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-
frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it
also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the
popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.
� 2010 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

GNSS (Global Navigation Satellite Systems) technology
is a valid aid in support of Earth Observation sciences,
both to provide platform navigation and as an additional
sensing instrument (Beutler et al., 1999). GNSS positioning
and navigation have been successfully employed in a num-
ber of airborne imagery and mobile mapping campaigns
(Corbett, 1993; Kocaman, 2003; Legat et al., 2006), as well
as in a number of recent spaceborne Earth observation mis-
sions (Bock et al., 2002, 2007; Kang et al., 2003; Monten-
bruck et al., 2008), providing an accurate estimate of the
platform’s absolute position and attitude. GNSS signals
have been exploited to study various atmosphere parame-
0273-1177/$36.00 � 2010 COSPAR. Published by Elsevier Ltd. All rights rese

doi:10.1016/j.asr.2010.02.023

* Corresponding author. Tel.: +31 647191774.
E-mail addresses: G.Giorgi@TUDelft.nl, gabgio@yahoo.com (G.

Giorgi).
ters, through the analysis of their reflections or deflections
in the different layers of the earth atmosphere (Azpilicueta
et al., 2006; Jin et al., 2007; Jin and Luo, 2009; Knedlik
et al., 2008; Ruzhin et al., 1998). Also remote sensing cam-
paigns conducted by means of unmanned airborne vehicles
(UAVs) or formation flying satellites widely benefit from
the GNSS technology.

One of the main issues in remote sensing applications is
the precise orientation estimation of the platform which
carries the sensors (such as radars and lasers). Many sen-
sors and technologies are available to estimate the attitude
of a platform, but there is a growing interest in GNSS-
based attitude determination (AD), often integrated at var-
ious levels of tightness to other types of sensors, typically
Inertial Measurements Units (IMU). Although the accu-
racy of a stand-alone GNSS attitude system might not be
comparable with the one obtainable with other modern
attitude sensors, a GNSS-based system presents several
rved.
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advantages: it is inherently driftless, minor maintenance is
required and it is not as expensive as other high-precision
systems, such as INS and Star Trackers. Several studies
have been carried out to investigate the feasibility and per-
formance of GNSS-based attitude determination, see e.g.
Axelrad and Ward (1994), Bar-Itzhack et al. (1998), Brown
(1992), Cohen (1992), Crassidis et al. (1997), Dai et al.
(2004), Euler (1995), Giorgi and Buist (2008), Hauschild
and Montenbruck (2007), Kim and Langley (2000), Kuylen
et al. (2005), Li et al. (2004), Madsen and Lightsey (2004),
Monikes et al. (2005), Psiaki (2006) and Schleppe (1997).

The precision of GNSS-based attitude determination is
driven by the quality of the GNSS observations and the
length of the baselines between the antennae. A precise
angular estimate is obtained exploiting the GNSS carrier
phase observables, which are two orders of magnitude
more accurate than the GNSS code observables. The
carrier phase measurements are, however, affected by
unknown integer ambiguities, since only their fractional
part is measured by the receiver. Due to its computational
efficiency, the LAMBDA (Least-squares AMBiguity Dec-
orrelation Adjustment) method (Teunissen, 1994a) is cur-
rently a widely used method for Ambiguity Resolution
(AR). The method is an implementation of the optimal
Integer Least-Squares (ILS) (Teunissen, 1994b, 1999)
principle.

Although the standard LAMBDA method has been
applied to AD applications, see e.g. Kuylen et al. (2006),
Monikes et al. (2005) and Wang et al. (2009), the intrinsic
properties of the AD problem have not been fully inte-
grated in these works. In Kuylen et al. (2006), for instance,
the known baseline length was only used as validation step
and in Monikes et al. (2005), Wang et al. (2009), the (sin-
gle) baseline length constraint was used to modify the
LAMBDA search routines for a subset of the unknown
integer ambiguities. In all existing approaches, however,
the complete set of a priori information is not integrally
exploited to directly aid the ambiguity resolution process.
In this contribution, a novel algorithm based on a nontriv-
ial modification of the LAMBDA method is presented and
tested. The method solves for the GNSS integer ambigui-
ties and the attitude of the platform in an integral manner,
thereby fully exploiting the set of nonlinear geometric
constraints available. This Multivariate Constrained
LAMBDA method (MC-LAMBDA), theoretically intro-
duced in Teunissen (2007a), has numerous advantages: it
is applicable to any number of antennae, to any GNSS sys-
tem and combinations of them, to any number of frequen-
cies, and it does not need any a priori information about
the attitude or the dynamics of the platform. The MC-
LAMBDA method is reviewed and its performance is
tested by processing and analysing data collected during
an airborne gravimetry experiment.

This contribution is structured as follows. In Section 2,
the GNSS attitude model is presented, while its multivari-
ate constrained integer least-squares solution is given in
Section 3. The results obtained from testing the method,
on both static and dynamic platforms, are presented and
discussed in Section 4. It is emphasized that we address
in this contribution the most challenging AR scenario,
namely single-epoch, single-frequency AR. This guarantees
a total independence from carrier phase slips and losses of
lock, and it also does not require any a priori motion model
for the platform.

2. The GNSS-based attitude model

The phase and code GNSS observations collected at
time t at receiver r tracking satellite s are modeled as Teun-
issen and Kleusberg (1998)
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where PðtÞ; UðtÞ are the code and phase observations at
time t (m); s, signal travel time satellite-receiver (s); q, geo-
metrical distance between receiver and satellite (m); I, T,
ionospheric and tropospheric effects (m); dm, dm, code
and phase multipath errors (m); c, speed of light
(299,792,458 m/s); dt, clock errors (s); d, d, instrumental de-
lays (s); /, phase of the generated carrier signal (original or
replica) (rad); k, carrier phase wavelength (m); and e, e are
the remaining unmodeled errors (m).

For those applications where one is interested in esti-
mating the relative positions of antennae rather than their
absolute positions, the differences between observations
taken at the same time, from the same satellite s, at differ-
ent receivers r1 and r2 (i.e. Single-Differences, SD) are
formed as
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where ð�Þr12
¼ ð�Þr2

� ð�Þr1
. Via the differencing operation,

many terms cancel out, like the (common) phase term rel-
ative to the common satellite s and the instrumental delays
and clock errors of satellite s.

The dimensionless term Ns
r12

indicates a whole number
of cycles: it quantifies the integer part of the measured
phase difference between two receivers, the so-called integer
ambiguity.

When addressing the AD problem, the SDs are taken
between antennae placed onboard a platform, and typically
the size of the body (ship, land vehicle, aircraft or space
platform) is less than a few hundreds of meters. This allows
one to neglect the atmospheric effects, which have very
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small variations on such short baselines. The clock biases
and the different instrumental delays still have to be
accounted for.

To eliminate the remaining clock terms, the Double-Dif-
ferences (DD), i.e. the differences between observations
taken at the same time, from two satellites, at different
receivers, are formed as
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where ð�Þs12

r12
¼ ð�Þs2

r12
� ð�Þs1

r12
. The advantage of the double

differences lies in the reduced set of unknowns: namely only
the baseline coordinates and the integer ambiguities re-
main. In this contribution, multipath is not corrected or
modeled for, so it is lumped in the terms e and e. The geo-
metrical term q in (5) and (6) contains the information
about the satellites-receivers geometry, but a linearization
step is necessary to extract the three sought for baseline
coordinates. Using qs

r ¼ krs � rrk, where rs is the satellite
position vector and rr the receiver position vector, the lin-
earized expressions for (5) and (6) read (Teunissen and
Kleusberg, 1998)
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where we dropped the time dependence notation. DP ; DU
stand for the ‘observed minus computed’ observations,
Dr12 is the increment vector of the baseline coordinates
and us12

r12
is the DD unit line-of-sight vector. In order to sim-

plify the notation, the set of 2n observations collected
tracking nþ 1 satellites on a single frequency is grouped
into the (2n)-vector of observed minus computed code
and carrier phase measurements:
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where the DDs are formed taking satellite k as reference.
The linearized set of DD GNSS code and phase observa-
tions tracking nþ 1 satellites on a single frequency is then
cast into the model

EðyÞ ¼ Azþ Gb z 2 Zn; b 2 R3

DðyÞ ¼ Qy

ð10Þ

where Eð�Þ is the expectation operator, z contains the n un-
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the vector of real-valued baseline coordinates. A is the
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Dð�Þ is the dispersion operator: a Gaussian-distributed er-
ror is assumed on the vectors of observables, characterized
by the variance–covariance (v–c) matrix Qy . The integer
nature of the n ambiguities is made clear through the nota-
tion z 2 Zn, while the baseline vector b belongs to the space
of real vectors b 2 R3. In Teunissen (2007a) it was shown
how to extend model (10) if a set of mþ 1 antennae collects
observations all tracking the same nþ 1 satellites:

EðY Þ ¼ AZ þ GB Z 2 Zn�m; B 2 R3�m

DðvecðY ÞÞ ¼ QY

ð12Þ

where Y is the 2n� m matrix whose columns are the linear-
ized DD code and phase observations of each baseline, Z is
the n� m matrix whose columns are the integer-valued
ambiguities for each baseline, and B is the 3� m matrix
whose columns are the real-valued baseline coordinates.
The noise on the matrix of observed-minus-computed
observations is described making use of the vec operator,
which stacks the columns of a matrix one under the other:
the matrix QY describes the dispersion of the vector of
observables vecðY Þ.

Aiming to estimate a platform’s full attitude from the
GNSS observations collected from three (or more) anten-
nae mounted on one body, the model (12) is modified to
include the attitude matrix as unknown. Assuming that
the baseline coordinates B in model (12) are derived in
the xyz orthogonal frame (usually the ECEF, Earth-Cen-
tered Earth-Fixed, or the ENU, East-North-Up frames
are used), a rotation matrix R is applied to convert B into
the local orthogonal frame uvw:

RT B ¼ Buvw ð13Þ

The baseline coordinates in the local frame Buvw are as-
sumed to be known and constant. The rotation matrix be-
longs to the class of orthogonal matrices O; in order to
maintain a full validity of the model when less than three
baselines (m < 3) are available, the matrix R is taken as
Teunissen (2007a)

m P 3
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q ¼ 2
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m ¼ 1

q ¼ 1
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where ri is a 3-vector of unit length and q is introduced for
notational convenience. The orthonormality constraint on
R implies that rT

i ri ¼ 1, for i ¼ 1; 2; 3, and rT
i rj ¼ 0 for

i–j, so that RT R ¼ Iq.
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Introducing the rotation matrix as unknown in the
model (12) gives the GNSS-based attitude model (Teunis-
sen, 2007a):

EðY Þ ¼ AZ þ GRBuvw Z 2 Zn�m; R 2 O3�q

DðvecðY ÞÞ ¼ QY

ð15Þ

In this contribution, the least-squares solution of model
(15) is addressed and tested: the two unknowns are the inte-
ger-valued matrix of ambiguities Z 2 Zn�m and the orthog-
onal attitude matrix R 2 O3�q. The integral resolution of
these unknowns from the set of GNSS code and phase
observations allow the estimation of precise attitude an-
gles, and the GNSS receiver(s) can estimate the attitude
manoeuvres of the platform (see Fig. 1) by updating the
GNSS observables epoch by epoch. Although the method
proposed can be directly extended to a multi-frequency,
multi-constellation GNSS, this contribution focuses on
the most challenging scenario when performing GNSS-
based attitude determination: the single-epoch, single-fre-
quency, unaided (i.e. GPS-only) scenario.

3. The integer least-squares solution

Solving for the unknowns in model (15) has been firstly
addressed in Teunissen (2007a), where the Least-Squares
Fig. 1. The data collected from three or more GNSS antennae mounted on the
solution was given. The application of the Least-Squares
principle to a set of linear(ized) equations where a subset
of the unknowns is subject to an integer constraint was
coined the Integer Least-Squares principle (ILS). ILS esti-
mation is efficiently implemented through the LAMBDA
method, which mechanizes the search for the ambiguities
in the integer domain and provides ambiguities with the
highest possible success rate (Teunissen, 1994a, 1997; Ver-
hagen and Teunissen, 2006).

The extension of the ILS solution to problems subject to
nonlinear geometrical constraints, such as the baseline
length, was discussed in Park and Teunissen (2003), Teunis-
sen (2007b, 2008, 2010), where the single-baseline case was
examined. The solution of the Constrained ILS problem
was given and implemented via an extension of the
LAMBDA method, coined the Constrained LAMBDA (C-
LAMBDA) method. The method was tested through simula-
tions as well as through static and dynamic experiments
(Buist, 2007; Giorgi et al., 2008; Giorgi and Buist, 2008; Park
and Teunissen, 2008; Teunissen et al., 2010). The solution
given in this contribution is a multivariate generalization
of these works: an arbitrary number of baselines can be
included in the model and integrally solved for.

The application of the least-squares principle to (15)
aims to minimize the weighted squared norm of the resid-
aircraft fuselage and wings allow the estimation of the aircraft’s attitude.
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uals while respecting the constraints posed on the
unknowns:

min
Z2Zn�m;R2O3�q

vecðY � AZ � GRBuvwÞk k2
QY

ð16Þ

The norm (16) is decomposed into a sum of squares as
Teunissen (2007a)
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with k � k2
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T Q�1ð�Þ and where � denotes the Kroneck-
er product. The following property of the vec operator,
vecðM1M2M3Þ ¼ MT
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the matrix of least-squares residuals.
The decomposition (17) makes use of the float solution,

which is the least-squares solution of (15) obtained by dis-
regarding both the integer constraint on Z and the ortho-
normality constraint on R:
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Matrices Ẑ and R̂ are the float estimators of the integer
ambiguity matrix Z and the rotation matrix R, respectively.
These float solutions do not generally respect the con-
straints: Ẑ is real-valued and R̂ is non-orthogonal. The v–
c matrices of the float solutions are obtained by inverting
the normal matrix,

QẐ QẐR̂

QR̂Ẑ QR̂

� 	
¼ N�1 ð19Þ

Would we assume the integer ambiguity matrix Z as
known, then the float estimator of the rotation matrix R

is obtained as

vec R̂ðZÞ
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¼ vec R̂
� �
� QR̂ẐQ�1

Ẑ vec Ẑ � Z
� �

ð20Þ

Application of the variance propagation law to expression
(20) gives the v–c matrix of R̂ðZÞ as:

QR̂ðZÞ ¼ QR̂ � QR̂ẐQ�1
Ẑ QẐR̂ ð21Þ

It is the inverse of this matrix which is used as weight ma-
trix in the last term of (17). The precision of R̂ðZÞ is consid-
erably higher than that of R̂, since it is now driven by the
fixed carrier phase observations. Note that also the matrix
R̂ðZÞ is generally not orthogonal.

From expressions (16) and (17) it follows that the mini-
mization problem that has to be solved is:
�Z ¼ arg min
Z2Zn�m
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The integer minimizer �Z weighs the sum of two coupled
terms: the first is the distance with respect to the float solu-
tion Ẑ weighted by Q�1

Ẑ , and the second is the distance be-
tween R̂ðZÞ and the solution of the nonlinear constrained
least-squares problem (23), weighted by Q�1

R̂ðZÞ. The final
estimate of the platform’s attitude is given by the rotation
matrix �R, which follows from minimizing in a weighted
least-squares sense the distance of matrix R̂ðZÞ to an ortho-
normal matrix.

A closed-form solution for the minimizer (22) is not
known, and a direct search in the space of integer matrices
must be employed. The integer matrix �Z is searched inside
the search space given by:

Xðv2Þ ¼ Z 2 Zn�mj vecðZ � ẐÞ
�� ��2

QẐ

n
þ vec R̂ðZÞ � �R

� ��� ��
QR̂ðZÞ
6 v2

�
ð24Þ

where v is a scalar carefully chosen as to limit the set Xðv2Þ:
its value should be large enough to guarantee the non-emp-
tiness of the search space, but not too large to avoid an
excessive computational load.

The set Xðv2Þ is searched in order to find the integer
matrix �Z which returns the smallest value for the sum of
the two terms in (22), and once it is found, the platform’s
attitude matrix �R is extracted. The process of integrally
resolving for the integer ambiguity matrix Z and the rota-
tion matrix R is the core of the proposed algorithm. The
solution of (22) is based on an extension of the LAMBDA
method, named the Multivariate Constrained LAMBDA
(MC-LAMBDA). The MC-LAMBDA method proceeds
by minimizing a function which accounts for both the inte-
ger and the attitude matrix. This is different from how it is
often done in practice, where the attitude is determined
based on an estimation of the baseline vectors, by firstly
solving for the ambiguities and then estimating the attitude
matrix by solving (23). The constrained least square prob-
lem (23), for QR̂ðZÞ diagonal, is the well known Wahba’s
problem (Wahba, 1965). The strengthening of the underly-
ing GNSS model obtained by including the additional
orthonormality constraint enhances the capacity of cor-
rectly fixing the sought-for integer matrix. This results in
a much more reliable ambiguity resolution process.

The MC-LAMBDA method uses the same principle as
the original LAMBDA method to decorrelate the search
space to allow a fast and efficient search, but it is modified
to include the additional nonlinear geometrical constraints.
Three steps are involved in the solution: first, the float esti-
mates of the unknowns are derived as (18); then the search
for the integer minimizer �Z is performed inside the (decor-
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related) set Xðv2Þ; finally the attitude matrix is extracted
solving the nonlinear constrained problem (23).

In the next sections, the method is tested and its perfor-
mance is presented. Particular attention is paid to assessing
the capacity of fixing the correct integer ambiguities. The
performance of the MC-LAMBDA method is compared
with that of the standard unconstrained method, where
the orthonormality constraint on R in (22) is disregarded
and the standard LAMBDA method is applied. If one dis-
regards the constraint on the rotation matrix, it follows
that the last term of (17) can be made zero for any choice
of Z, and therefore the ambiguity resolution problem is
decoupled from the one of attitude estimation. As a result,
the minimization problem reduces to

�ZU ¼ arg min
Z2Zn�m

vecðZ � ẐÞ
�� ��2

QẐ

�RU ¼ arg min
R2O3�q

vec R̂ �ZU
� �

� R
� ��� ��2

QR̂ðZÞ

ð25Þ

where firstly the ambiguities are resolved applying the stan-
dard (unconstrained) LAMBDA method and only then the
attitude matrix is estimated solving the constrained least-
squares problem.
4. Testing the method

The MC-LAMBDA method has been tested processing
actual data collected during a static as well a dynamic
experiment. On 1 November 2007 a flight test was per-
formed, as part of the Gravimetry using Airborne Inertial

Navigation (GAIN) project (Alberts et al., 2008). Several
GNSS receivers were employed both on the ground, to
set up a ground station to provide a Real Time Kinematic
(RTK) solution for the aircraft’s position (Buist, 2008), and
onboard the aircraft, to estimate its attitude. The experi-
ment aimed to investigate the local gravity acceleration
variations over an area spanning several tens of kilometers:
to this purpose the aircraft was equipped with an Inertial
Navigation System (INS), whose output is used to test
the GNSS-based attitude estimation accuracy in this
contribution.

The next two sections review the set-up of the ground
station and aircraft, and the testing results are given.
Two performance parameters have been investigated: the
unaided, single-epoch, single-frequency success rate, i.e.
the ratio of correctly fixed ambiguities based on a single-
epoch of observations tracking GNSS satellites on a single
frequency (and consequently the availability of a precise
GNSS-based attitude solution on a single-epoch base),
and the accuracy of the attitude angles.

All the angles derived are referred to the ENU (East–
North-Up) frame (see Fig. 2), with the Heading angle
w 2 ½�180�;þ180��, relative to the North direction. The
rotation matrix is parameterized in terms of the three Euler
angles Heading (w), Elevation (h) and Bank (/), and it is
obtained as a succession of three rotations around the main
axis: Rðw; h;/Þ ¼ R3ðwÞR2ðhÞR1ð/Þ. The local frame Buvw is
chosen as to have the first axis u aligned with the first base-
line, the second v perpendicular to u, in the plane formed
by the first two baselines, and the third axis w perpendicu-
lar to u and v, directed as to form a right-handed orthogo-
nal frame.
4.1. A static test: processing the ground station data

A set of three geodetic quality receivers (a Trimble R7
and two Trimble SSi) and three antennae (a Trimble
Zephyr Geodetic L1/L2, the Master, and two Trimble
Geodetic W Groundplane, the auxiliaries) were used to
set up a ground station. The Trimble R7 was connected
to the Trimble Zephyr Geodetic, that was placed above a
known static reference point; the other two antennae were
placed in proximity of the first one at a known fixed dis-
tance (see Fig. 3). Data were collected between 10:44 and
13:29, UTC time, at the frequency of 1 Hz, so that a total
of 9915 epochs were logged.

Table 1 reports the single-frequency, single-epoch suc-
cess rate obtained processing the static dataset with both
the LAMBDA and the MC-LAMBDA methods, as func-
tion of the number of satellites tracked. The MC-
LAMBDA method shows a large robustness, obtaining a
successful fixing (success rate higher than 99%) in all but
one condition, and providing the correct precise attitude
solution for all the epochs processed when five or more sat-
ellites are tracked. When only four satellites are tracked,
the MC-LAMBDA algorithm still provides a success rate
higher than 80%: the lower performance is mainly due to
the bad geometry of the four satellites tracked, for which
the PDOP value is higher than 17. The number of available
satellites strongly affects the performance of the standard
LAMBDA method, whereas the inclusion of the geometri-
cal constraints strengthens the model such to guarantee a
large fixing rate in harsher conditions.

The two baselines Master-Aux1 and Master-Aux2 deter-
mine the local baseline frame Buvw: the precision of the esti-
mated attitude angles depends on how the frame Buvw is
chosen, since longer baselines provide more precise estima-
tions. Table 2 shows the precision of the estimated attitude
angles with different choices for the baseline coordinate
frame:

B0uvw ¼
2:214 0:701

0 1:595

� 	
ðmÞ B00uvw ¼

1:7422 0:891

0 2:026

� 	
ðmÞ

where B0uvw is chosen as to have the longer baseline Master-

Aux1 aligned with the first axis, while the u axis of the
frame B00uvw is aligned with the shorter baseline Master-

Aux2. Both cases show a higher precision of the estimated
heading angles, which are less affected by the GNSS satel-
lite geometry (the satellites are observed only from one side
of the sky, causing a larger propagation of the errors in the
vertical direction rather than in the local horizontal plane).
The elevation and bank angles are estimated with lower
precision, and the dependence on the baseline length is



Fig. 2. The three consecutive rotations which transform the coordinates from the ENU frame (enu) to the local (body) frame uvw.

Fig. 3. The Ground Station set-up.

Table 1
The single-frequency, single-epoch success rate for the LAMBDA and the
MC-LAMBDA methods (%) as function of the number of satellites
tracked.

Number of tracked satellites
(PDOP)

LAMBDA
(%)

MC-LAMBDA
(%)

9 (2.0) 99.84 100
8 (2.1) 97.73 100
7 (2.2) 78.47 100
6 (2.6) 38.91 100
5 (3.2) 4.98 99.57

4 (17.1) 0.88 84.22

Table 2
Standard deviation of the three estimated attitude angles as function of the
baseline coordinate frame chosen.

Frame rðwÞ ð�Þ rðhÞ ð�Þ rð/Þ ð�Þ
B0uvw 0.054 0.120 0.174
B00uvw 0.053 0.186 0.100
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clear: for B0uvw, the second baseline is shorter, causing lower
precision in the bank estimation, while for B00uvw, with the
second baseline being longer, the bank angle estimation is
more precise. Fig. 4 shows the time series of the estimated
attitude angles for the two choices of local baseline
coordinates.
4.2. A dynamic test: aircraft attitude estimation

As a support for the GAIN project, the Cessna Citation
II of the Faculty of Aerospace Engineering, Delft Univer-
sity of Technology, was equipped with a number of GNSS
antennae: two on the body, approximately in the middle of
the fuselage (a Novatel AIL DM-C L1-L2 and a L1/L2
Sensor Systems), one at the extremity of the left wing,
and one on the nose (both L1 Sensor Systems). One of
the antennae on the fuselage and the two on the nose
and the wing were connected to a Septentrio PolaRx2@
receiver, logging data for the entire duration of the flight,
from 10:06 to 14:18 (UTC time), collecting a total of
15101 epochs (at 1 Hz). Fig. 5 shows the set up of the
antennae and receivers on the Cessna Citation II: only
the data logged from the Septentrio receiver are used in this
analysis. The body frame is built so to have the first axis u



Fig. 4. The time series of the estimated static attitude angles. B0uvw is the local baseline coordinates frame built as to have the longest baseline aligned with
the axis u, while B00uvw is the local baseline coordinates frame built as to have the shortest baseline aligned with the axis u.
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aligned with the baseline formed by the antennae on the
body and the nose:

Buvw ¼
4:90 �0:39

0 7:60

� 	
ðmÞ
The sensing equipment carried onboard for the gravimetry
study was an Inertial Navigation System (INS): the Honey-
well Laseref II IRS (YG1782B). Fig. 6 shows the ground
track of the flight calculated with the single-frequency
observations collected on the main antenna; also the alti-
tude profile, the number of satellites tracked and the corre-
sponding PDOP values are shown.

The data have been processed on a single-epoch base,
and no external aid, validation or quality control proce-
dure have been applied. The unaided, single-epoch, sin-
gle-frequency success rate for the entire duration of the
flight is reported in Table 3. The improvement when
employing the Multivariate Constrained LAMBDA
method is very impressive: the estimation of the integer
ambiguities is successful for more than 88% of the time,
thus making available a reliable attitude estimation almost
epoch-by-epoch. The importance of the obtained result is



Fig. 5. The set up of the GNSS antennae and receivers on the Cessna Citation II.

Fig. 6. The ground track and altitude profile of the flight, and the number of tracked satellites and PDOP.
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Table 3
The single-frequency, single-epoch success rate for the LAMBDA and the
MC-LAMBDA methods (%) and the standard deviations of the differ-
ences between GPS and INS attitude angles output.

Single-epoch, single-frequency
success rate

LAMBDA (%) MC-LAMBDA (%)
31.68 88.10

rðwÞ ð�Þ 0.065
rðhÞ ð�Þ 0.202
rð/Þ ð�Þ 0.124
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evident when considering that a fast recovery after a cycle-
slip or carrier loss-of-lock is of utmost importance for
those applications that require a continuous knowledge
Fig. 7. Time series of the three attitude angles as estimated via GNSS and prov
on the right a shorter interval is visualized.
of the platform’s attitude. Reducing the number of epochs
needed to guarantee a reliable solution, ideally to a single
epoch, is then a primary requirement.

Fig. 7 shows the time series of the three attitude angles;
the INS output is also reported, to provide a term of com-
parison. The accuracy of the solution can be approxima-
tively determined by comparing the attitude angles
provided by the given algorithm and the output of the
INS: Table 3 reports the standard deviations of the differ-
ences between the angles provided by the GPS and the INS.
Similar to the static experiment, the heading angle can be
determined with higher precision: the differences with
respect to the INS output are less than 0.07� (1r). The ele-
ided by the INS. The whole processed time span is shown on the left, while



128 G. Giorgi et al. / Advances in Space Research 46 (2010) 118–129
vation angle is the least precise, presenting a noisier charac-
teristic; the bank angle, thanks to the longer baseline, could
be determined more precisely than the elevation, with dif-
ferences respect to the INS output limited to 0.13� (1r).
5. Conclusion

GNSS is an important technology for providing accu-
rate position and attitude estimations of Remote Sensing
platforms. This contribution focussed on GNSS carrier
phase-based attitude determination: we analyzed the per-
formance of a novel method for integral ambiguity resolu-
tion and attitude estimation of flying platforms.

Integer ambiguity resolution is the key for being able to
exploit the very high precision of the carrier phase data for
attitude determination. In this contribution, we described
the GNSS attitude model and presented the corresponding
multivariate constrained integer least-squares solution. Our
method for computing this solution is a multivariate con-
strained version of the LAMBDA method. The method
presented is generally applicable and therefore not
restricted to a particular GNSS application. It is character-
ized by the fact that it is independent of baseline length,
independent of platform dynamics, and independent of
which GNSS is chosen, therefore applicable to any geomet-
rical arrangement of antennae, collecting data from any
single or multiple GNSS.

The principles of the new Multivariate LAMBDA
method are illustrated and its performance tested using
data collected during an airborne remote sensing cam-
paign, focusing on the most challenging scenario: single-
frequency, single-epoch, unaided (i.e. GPS-only) full atti-
tude ambiguity resolution. Tests were performed process-
ing both data collected on a static platform, with high
quality receivers and antennae, and data collected on a
dynamic platform, affected by higher noise levels and mul-
tipath. The superior success rate performance compared to
the ones of the unconstrained standard LAMBDA method
are due to the rigorous incorporation of the nonlinear con-
straints into the integer estimation process. These con-
straints are given by the known body frame geometry of
the GNSS antennae configuration. The strengthening of
the model leads to a very robust method, capable of pro-
viding precise attitude estimation in a wider range of con-
ditions (lower number of satellites, higher noise,
multipath-affected observations). The given method is suit-
able for marine, airborne as well as spaceborne remote
sensing campaigns, where a reliable method to resolve the
GNSS integer ambiguities is required.
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