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ABSTRACT
In this paper we present experimental results of a new ap-
proach for resolving GNSS baseline constrained integer
ambiguities. The method is based on a modification of
the LAMBDA method, where the a-priori information on
the baseline length is exploited in the search process. The
integer ambiguity vector is searched by means of a pro-
cessing strategy which iteratively reduces the size of the
search space, resulting in fast convergence to the sought-
for solution. The Search and Shrink strategy is explained
and numerical diagnostics are presented to illustrate its
performance. Our results are based on simulated as well
as on actual GNSS data and focus on single-frequency,
single epoch processing, which is considered the most
challenging case of GNSS attitude determination.

1 INTRODUCTION
In order to achieve the highest levels of ranging precision
with GNSS, the carrier-phase observations must be em-
ployed. The carrier-phase measurements are however af-
fected by unknown integer ambiguities, which must be re-
solved in order to take advantage of the high carrier-phase
measurement precision. Once the ambiguities are fixed,
the precise data can be used for a wide range of demand-
ing applications, ranging from terrestrial to maritime and
aerospace utilizations. An important problem in a wide
range of applications is GNSS-based attitude determina-
tion, where the baseline length is usually known. For this
problem integer ambiguity resolution is still challenging,
in particular if one aims at single-frequency, single-epoch

GNSS-based attitude determination.
Various approaches have been developed for resolving the
GNSS attitude ambiguity resolution problem, see e.g. ([1],
[2], [3], [4], [5], [6], [7]). In this contribution we will
work with the LAMBDA (Least squares AMBiguity Decor-
relation Adjustment) method. This method, originally in-
troduced in [8],[9],[10], is due to its efficiency and opti-
mality widely used for GNSS ambiguity resolution. The
theoretical proof of its optimality was given in [11].
The standard LAMBDA method can be applied to all un-
constrained and linearly constrained GNSS models. In
case of nonlinear constraints an extension is needed. Such
an extension is the baseline constrained LAMBDA method
as introduced in [12] for the GNSS compass problem.
Practical results obtained with this method can be found
in e.g. ([13], [14], [15], [16], [17], [18], [19]). In this
method different options exist for setting the size of the
search space and for performing the actual search. It is
the presence of the baseline length constraint that makes
the setting of an adequate search space size particularly
challenging. One option for setting the size of the search
space is based on setting a tight initial size possibly fol-
lowed by incremental inflations in case the search space
is found empty. Although the size of the incremental in-
flations are chosen a priori, this approach has shown to
result in a very efficient search. This approach and results
obtained with it are described in [13] and [19].
Another option for handling the size of the search space
and the search in it, is based on the so-called Search and
Shrink approach as introduced in [20]. With this approach
it is guaranteed that one starts with a nonempty search
space. This initial space may be too large however for an
exhaustive search. A partial search followed by a shrink-
age step is therefore applied until the sought for integer
minimizer is found. It is this Search and Shrink approach
of the baseline constrained LAMBDA method that we
will study in the present contribution.

This contribution is structured as follows. In Section 2
we introduce the models for the unconstrained and con-
strained integer least squares problem, while Section 3
gives a brief review of the LAMBDA method. In Sec-
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tion 4 we present elements of the constrained LAMBDA
method and briefly describe its Search and Shrink strat-
egy. The performance of this strategy is studied in the sec-
tions following. In Section 5 results are presented which
are obtained from simulated data, while in Section 6 re-
sults are reported that are obtained from actual data of
a static ground station and of a dynamic antenna-frame
mounted onboard an aircraft.

2 INTEGER LEAST SQUARES
The system of linearized double differences code and car-
rier phase observations can be expressed as

E(y) = Aa+Bb D(y) = Qy (1)

where E(.) and D(.) are the expectation and dispersion
operator, respectively, y is the vector of observables, a is
the vector of ambiguities, and b is the baseline vector. A
is the matrix containing the carrier wavelengths, B is the
matrix containing the line of sight vectors, and Qy is the
variance-covariance matrix of the observables. In this for-
mulation we neglect the atmospheric errors, limiting our
analysis to short baseline applications.
The least-squares minimization problem of model (1) reads

min
a,b
‖y −Aa−Bb‖2Qy

a ∈ Zn, b ∈ R3 (2)

Since it is subject to the integer constraints on the carrier
phase ambiguities, a ∈ Zn, it has been coined an Integer
Least Squares (ILS) problem in [8].
In our present application we have one additional con-
straint, namely that the length of the baseline vector is
known, ||b|| = l. Our least-squares minimization prob-
lem becomes then

min
a,b
‖y−Bb−Aa‖2Qy

a ∈ Zn, b ∈ R3, ‖b‖2 = l2 (3)

This least-squares problem has been coined a Quadrati-
cally Constrained Integer Least-Squares (QC-ILS) prob-
lem in [20].

3 THE LAMBDA METHOD
We first briefly discuss the LAMBDA method for solv-
ing (2). The method is based on the following orthogonal
decomposition [21]:

‖y−Aa−Bb‖2Qy
= ‖ê‖2Qy

+‖â−a‖2Qâ
+‖b̂(a)−b‖2Qb̂(a)

(4)
where ê = y − Aâ − Bb̂ is the residual vector, â and
b̂ are the float ambiguity and float baseline solution, re-
spectively, and b̂(a) is the conditional baseline solution.
The float solutions â and b̂ are computed from the normal
equations[

ATQ−1
y A ATQ−1

y B
BTQ−1

y A BTQ−1
y B

] [
â

b̂

]
=

[
ATQ−1

y y
BTQ−1

y y

]
(5)

Since the third term on the right side of (4) can be made
zero for any a ∈ Zn, the solution to our minimization
problem is given as

ǎ = arg min
a∈Zn

||â− a||2Qâ
, b̌ = b̂(ǎ) (6)

The computation of ǎ is a nontrivial task which involves
a discrete search strategy. The search space is defined as

Ω0

(
χ2

)
=

{
a ∈ Zn | ||â− a||2Qâ

≤ χ2
}

(7)

Geometrically, the search space is an ellipsoid in an n-
dimensional space, centred at â and with its size governed
by the positive constant χ2. Note that χ2 must be chosen
large enough to guarantee the presence of the integer min-
imizer, but not too large to avoid a too high computational
load. Considerations on the importance in the choice of
χ2 can be found in [22] and [23]. Experience has shown
that the use of the bootstrapped solution is often a good
choice for setting the initial search space.
In case of GNSS the ambiguity search space (7) usually
has a significant elongation due to the covariance prop-
erties of the double differenced ambiguities [21]. As a
result, the search for the integer minimizer ǎ will usually
become highly inefficient. The LAMBDA method takes
care of this by means of a decorrelation of the float am-
biguities that is realized via an integer preserving trans-
formation matrix. As a result, the search becomes much
faster in the decorrelated space and the computation of the
integer minimizer much more efficient.

4 THE CONSTRAINED LAMBDA METHOD
The baseline constrained model (3) is solved by modify-
ing the original LAMBDA method whereby knowledge
of the baseline length, ||b|| = l, is exploited both in the
derivation of the float solution and in the search process.

4.1 Quadratically constrained integer least-squares
It follows from (4) that

min
a∈Zn,b∈R3,‖b‖=l

‖y −Aa−Bb‖2Qy
= ||ê||2Qy

+

min
a∈Zn

(
‖â− a‖2Qâ

+ min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)

) (8)

Note that now the third term on the right hand side does
not vanish due to the baseline length constraint.
If we define

F (a) = ‖â− a‖2Qâ
+ ‖b̂(a)− b̌(a)‖2Qb̂(a)

(9)

with

b̌(a) = arg min
b∈R3,‖b‖=l

‖b̂(a)− b‖2Qb̂(a)
(10)

then the sought for QC-ILS solution is given as

ǎ = arg min
a∈Zn

F (a) , b̌ = b̌(ǎ) (11)
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Note, due to the presence of the baseline term in F (a),
that ǎ is now not anymore the integer vector closest to â.
In the above expressions for ǎ and b̌, the unconstrained
float solutions â and b̂ are used. It is also possible however
to make use of the baseline constrained float solutions.
As shown in [12] this is achieved by replacing â, b̂(a), Qâ
and Qb̂(a) in (9) and (10) by their constrained counter-
parts.

4.2 An exhaustive search
In principle the solution ǎ of (11) can be computed by
means of an exhaustive search in the search space

Ω
(
χ2

)
=

{
a ∈ Zn | F (a) ≤ χ2

}
(12)

First one collects all integer vectors that lie inside Ω
(
χ2

)
and from this set one then selects the integer vector that
returns the smallest value for F (a). Note however that
the search space is no longer an ellipsoid as it was in the
unconstrained case. This complicates the search some-
what. As a remedy one can work with an ellipsoidal
search space that encompasses Ω

(
χ2

)
. The steps for com-

puting ǎ are then as follows:

1. Set the size of the search space by taking χ̃2 =
F (ã) for some ã ∈ Zn. For a discussion on the
choice of ã see Section 5.3.

2. Enumerate all the integer vectors contained in the
larger (ellipsoidal) search space (see Fig.1)

Ω0

(
χ̃2

)
=

{
a ∈ Zn| ‖â− a‖2Qâ

≤ χ̃2
}
⊇ Ω

(
χ̃2

)
This can be efficiently performed with the LAMBDA
method.

3. ComputeF (a) for each collected integer vector and
select the one which returns the smallest value for
this objective function.

Clearly this exhaustive search is simple and rather straight-
forward to apply. However, it also has the tendency of be-
ing rather inefficient, in particular if the underlying GNSS
model lacks sufficient strength. Since F (a) needs to be

Fig. 1: Visualization of the sets Ω(χ2) and Ω0(χ2).

computed for all integer candidates, this also holds true
for the rather time-consuming computation of b̌(a), c.f.
(10). Hence, the whole search becomes very inefficient if
the search space contains too many integer vectors. This
can be avoided if one is in the position of computing a
small enough value for χ̃2, which is possible if the under-
lying GNSS model has sufficient strength. This is the case
for example with short-baseline multi-frequency models,
where the bootstrapped solution (or even the rounded one)
based on the unconstrained float solution is already close
to the final fixed solution. It is generally not the case how-
ever for models based on single-frequency, single-epoch
data.

4.3 Search and Shrink
To make the search much more efficient a Search and
Shrink strategy was introduced in [20]. It aims at itera-
tively reducing the size of the search space without the
necessity of computing b̌(a) at each step. An important
element of this new approach lies in its capacity of bound-
ing the function F (a) by functions that are easier to eval-
uate.
If we make use of the maximum (λmax) and the minimum
(λmin) eigenvalues of the matrix Q−1

b̂(a)
, we can construct

the followings inequalities:

F1(a) ≤ F (a) ≤ F2(a)

F1(a) = ‖â− a‖2Qâ
+ λmin

(
‖b̂(a)‖I3 − l

)2

F2(a) = ‖â− a‖2Qâ
+ λmax

(
‖b̂(a)‖I3 − l

)2

(13)

With the two functions F1(a) and F2(a) correspond the
following two search spaces

Ω1

(
χ2

)
=

{
a ∈ Zn | F1(a) ≤ χ2

}
Ω2

(
χ2

)
=

{
a ∈ Zn | F2(a) ≤ χ2

} (14)

Note that (see Fig.2)

Ω2(χ2) ⊆ Ω(χ2) ⊆ Ω1(χ2) (15)

In short the algorithm now works as follows. We first
determine the integer minimizer of F2(a) by means of a
Search and Shrink strategy. Starting with a certain initial
χ2

0, we search for an integer vector in the (decorrelated)
space Ω2:

Ω2

(
χ2

0

)
=

{
a ∈ Zn | F2(a) ≤ χ2

0

}
⊆ Ω

(
χ2

0

)
(16)

As soon as such an integer vector is found, say ã, the
space is shrunk to the value χ̃2 = F2(ã) < χ2

0 and the
search continues in this smaller set. In this way the search
proceeds rather quickly towards the integer minimizer of
F2(a), which we denote as ǎ2. This integer vector is not
necessarily the minimizer of F (a), but it is known to lie
inside the set

Ω
(
χ2

1

)
⊆ Ω1

(
χ2

1

)
=

{
a ∈ Zn | F1(a) ≤ χ2

1

}
(17)
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Fig. 2: Visualization of Ω(χ2) and its two bounding sets
Ω1(χ2) and Ω2(χ2).

with χ2
1 = F2(ǎ2). All the integer vectors contained in Ω1

are then enumerated and the integer minimizer of F (a) is
selected.
The search algorithm is thus divided in three consecutive
steps: shrinking (working with the set Ω2), enumerating
(working with the set Ω1) and minimizing (computing
F (a) for the remaining candidates). Fig.3 illustrates the
flow chart of the algorithm. For a detailed description of
the Search and Shrink strategy we refer to [20].

5 SIMULATION RESULTS
5.1 Simulation set up

Date and time 22 Jan 2008 00:00
Location Lat: 50◦ , Long:3◦

GPS week 439
Scenario Single baseline, stationary

Frequency L1
Number of Satellite vs PDOP
5 4.192
6 2.142
7 1.917
8 1.811

Undifferenced code noise
σp [cm] 30 - 15 - 5

Undifferenced phase noise
σφ [mm] 30 - 3 - 1

Baseline length l 2.00 m
Epochs simulated 105

Convention on the figures: pp cc
pp: code noise in cm
cc: phase noise in mm

Table 1: Simulation set up.

In order to investigate the performance of the algorithm,
we first tested it on simulated data. Table 1 reports the

Fig. 3: Flow chart of the Search and Shrink algorithm.

conditions of the simulations. Via the software VISUAL
[24], based on a certain location of the receivers and the
actual GPS constellation, the design matrices of model
(1) were build. Assuming different levels of noise on
the undifferenced phase (from 1 mm to 30 mm) and un-
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differenced code (from 5 cm to 30 cm) data, a set of
105 data was generated randomly for every combination;
then each simulation was repeated for different number of
satellites varying between 5 and 8, corresponding to dif-
ferent PDOP values. Other sources of error, such as multi-
path, have not been considered here, to test the algorithm
in a controlled environment, with limited sources of error.
Later on, we processed experimental datasets, to properly
challenge the method in real environments, ranging from
high quality-static scenario (ground station, see Section
6.1) to high-dynamic platforms (aircraft, see Section 6.1).
Two different aspects have been investigated: the exper-
imental success rate, which depends on the strength of
the underlying GNSS model, and the speediness of the
method, which is mainly related to the search strategy
adopted.

5.2 Single-frequency, single-epoch success rates
The experimental success rate is defined as the percent-
age of occurrences wherein the true integer vector has
been correctly fixed among the total number of epochs
processed. Table 2 shows unconstrained and constrained
LAMBDA success rates for a 2m baseline in dependence
of the number of satellites tracked and the phase and code
level noise (σφ, σp).
The baseline constrained LAMBDA method clearly pro-
vides much better results than its unconstrained version.
The differences in success rate are particularly pronounced
when the strength of the underlying GNSS model becomes
weaker (fewer satellites and/or higher measurement noise).
Making use of the baseline constraint in these cases im-
proves the success rate considerably. According to Table
2 already 5 satellites and a phase standard deviation of 3
mm gives a higher than 70% success rate. The differences
in success rate become less pronounced when the strength
of the underlying GNSS model increases. For instance,
with 8 satellites and a phase and code precision of 3 mm
and 5 cm, respectively, a close to 100% success rate is

σφ [mm] 30 3 1
σp [cm] 30 15 5 30 15 5 30 15 5

N Success rate, standard LAMBDA
Success rate, constrained LAMBDA

5 0.41 2.84 29.59 3.30 19.50 86.67 5.99 26.89 95.37
3.47 9.57 41.64 72.43 88.86 99.63 96.54 99.94 100

6 0.64 3.54 30.95 24.83 66.71 96.89 49.13 86.67 99.99
4.31 12.17 43.51 95.75 99.18 99.90 99.99 100 100

7 0.83 4.40 34.08 50.24 79.69 99.53 74.17 93.27 100
5.80 14.41 46.34 99.34 99.97 100 100 100 100

8 1.09 5.68 36.10 86.17 94.48 99.99 99.972 99.99 100
6.78 17.13 47.75 99.80 99.99 100 100 100 100

Table 2: Simulation results: single-frequency, single-epoch success rates (in %) for the unconstrained and constrained
LAMBDA methods. Success rates higher than 99% have been stressed.

already achieved with the standard LAMBDA method.

5.3 Computational timing
A fundamental aspect for GNSS ambiguity resolution is
the speed with which the various computations can be per-
formed. This is particularly relevant for applications that
require (near) real-time results.

Setting the size of the search space
It is important to be able to set the size of the search space
at an appropriate level, i.e. not too small and not too large.
A too small size results in an empty search space, while
a too large size results in a search space with an abun-
dance of integer vectors in it. To guarantee that the search
space is nonempty and thus includes the sought for integer
minimizer, we set the size of the search space by taking
χ̃2 = F2(ã) for some ã ∈ Zn. We studied four different
ways of choosing such ã:

• Rounding the unconstrained float solution (R1),

• Rounding the constrained float solution (R2),

• Bootstrapping the constrained float solution, using
Q−1
â as weight matrix, (B1),

• Bootstrapping the constrained float solution, using
the Hessian matrix ofF2(a) as weight matrix, (B2).

In all these four cases we first applied a decorrelating
Z-transformation before rounding or bootstrapping was
done. To show how close the timing performance of the
constrained LAMBDA Search and Shrink strategy is to
the timing performance of the standard LAMBDA method,
the timing results are shown in Fig.4 as a ratio with re-
spect to the standard LAMBDA timing results. Since the
complexity of the constrained LAMBDA method is larger
than that of the standard LAMBDA method, one can ex-
pect the former to be slower than the latter. Furthermore,
the code for the constrained LAMBDA algorithm has not
been optimized yet.
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The overall results of Fig.4 show however that the differ-
ences are not too large, in particular if one focuses on the
cases for which the constrained LAMBDA success rates
are larger than 99% (see Table 2).
As to the choice of setting the search space size, the re-
sults show that rounding the constrained float solution
(R1) and bootstrapping the constrained float solution, us-
ing the Hessian matrix as weight matrix (B2), give the
best overall timing performance.

Fig. 4: Ratios with respect to standard LAMBDA of
the mean computational search times for four differ-
ent ways of setting the size of the initial search space:
R1, R2, B1, B2.

Fig. 5: Mean computational time: division between the
three steps of the baseline constrained LAMBDA algo-
rithm. Setting the size of the initial search space: B2

Distribution of computational load
Fig.5 shows how the (mean) computational time is dis-
tributed over the 3 different steps of the algorithm (shrink
Ω2, enumerate Ω1, and minimize F (a)). In all cases the
size of the search space has been set by bootstrapping us-
ing the Hessian (B2). To make the comparison proper, we
remark that the computation of the integer minimizer has
been included also when only one integer vector was con-
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Nsat 5 6 7 8
σφ σp Maximum and mean number
[mm] [cm] of enumerated integer vectors

30
30 64

4.50
25
2.36

28
2.51

31
2.59

15 34
4.01

22
2.28

35
2.36

30
2.33

5 22
2.23

10
1.44

11
1.44

13
1.55

3
30 32

2.41
8
1.08

14
1.02

6
1.01

15 21
1.77

7
1.03

4
1.01

4
1.01

5 9
1.11

2
1.01

1
1

1
1

1
30 11

1.13
2
1.01

1
1

1
1

15 6
1.01

1
1

1
1

1
1

5 2
1.01

1
1

1
1

1
1

Table 3: Simulation results: maximum and mean number
of enumerated integer vectors in the shrunk space.

tained in the shrunk search space. The results show that
the enumeration- and minimization step take the shortest
time, while the shrinking process generally accounts at
least for 60% of the total computational time. That the
enumeration and minimization can be done so quickly is
in fact due to the successful performance of the shrinking
process. It is the shrinking that allows one to finally work
with so small search spaces.
To illustrate the success of the shrinking process, Table
3 shows the number of enumerated integer vectors in the
shrunk search space for different number of tracked satel-
lites and varying noise on the code and phase observa-
tions. It shows that the number of integer vectors inside
the shrunk search space is indeed very small in general
and that it gets smaller as the strength of the underly-
ing GNSS model gets larger (more satellites and/or lower
noise).

6 EXPERIMENTAL RESULTS

To support an aerial remote sensing campaign held on
1 November 2007 in the Netherlands, several GPS an-
tennas/receivers were mounted onboard the TU Delft air-
craft. Furthermore, a static ground station was set up by
using three receivers and three antennas forming a frame
with known geometry. The Search and Shrink approach
was tested both on the static set up and the dynamic plat-
form.

Baseline Success rate Computational time
l [m] % Mean [ms]

Standard LAMBDA
A-B 2.20 99.99 3.9
A-R7 2.21 99.80 4.0
B-R7 1.74 99.67 4.1

Constrained LAMBDA
A-B 2.20 100 7.4
A-R7 2.21 100 6.9
B-R7 1.74 100 7.2

Table 4: Single-frequency, single-epoch success rates (%)
andB2-based computational times for the ground station.

6.1 Ground station
The reference station was set up placing an antenna (Trim-
ble Zephyr Geodetic L1/L2) above a known static ref-
erence point; two other antennas (Trimble Geodetic W
Groundplane) were then placed in proximity of the first
one at a known fixed distance (see Table 4). The three
antennas were connected to a Trimble R7 and two Trim-
ble SSi (A and B) receivers. Data were collected between
10:44 and 13:29, UTC time, for a total of 9915 epochs
logged. The number of satellites tracked equaled 9 most

Fig. 6: Mean computational time of ground station using
rounding constrained solution (R2), bootstrapping con-
strained solution (B1), and bootstrapping constrained so-
lution with Hessian (B2). The division between shrink-
ing, enumeration and minimization is also shown.
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Fig. 7: The Cessna Citation II aircraft of the Faculty of
Aerospace Engineering, Delft University of Technology.

of the time with a few drops to 8 satellites. The PDOP
was around 2 most of the time with a few excursions to
values around 3.
Table 4 shows the success rates and the mean computa-
tional times obtained with the standard and constrained
LAMBDA methods. Note that both methods show the
same order of efficiency and that they both produce high
success rates, with those of the constrained LAMBDA
method being larger of course. The high success rates
for the unconstrained case is due to the number of satel-
lites tracked (8 or 9) and the high quality receivers used
(σφ = 3 mm, σp = 30 cm), see also Table 2. The re-
sults of Fig.6 confirm our simulated results. Rounding or
bootstrapping the constrained solution (R2,B1) and boot-
strapping the constrained solution using the Hessian of
the objective function (B2) give good results for setting
the size of the search space. Also note that due to the suc-
cess of the shrinking process almost no time is needed for
the minimization. In fact, in the computations of all three
baselines the shrinking process resulted in all cases ex-
cept one in a search space containing only a single integer
vector.

6.2 The aircraft
Our experiment was conducted with the Cessna Citation
II aircraft of the Faculty of Aerospace Engineering, Delft

Fig. 8: Number of satellites tracked from aircraft and cor-
responding PDOP values.

Baseline Success rate Computational time
l [m] % Mean [ms]

Standard LAMBDA
bI 4.90 25.08 7.7
bII 7.61 60.54 7.5

Constrained LAMBDA
bI 4.90 62.38 31.9
bII 7.61 94.00 19.4

Table 5: Single-frequency, single-epoch success rates and
B2-based computational times for aircraft data.

University of Technology (see Fig.7). The aircraft was
equipped with three GNSS antennas: one on the body,
approximately in the middle of the fuselage (L1/L2 Sen-
sor Systems), one on the wing and one on the nose (both
L1 Sensor System). We name bI the body-nose baseline,
bII the body-wing baseline. These three antennas were
all connected to a Septentrio PolaRx2@, logging data at
10Hz for the entire duration of the flight. Data were col-
lected on 1 November 2007, between 10:06 and 14:23,
UTC time, for a total of 154511 epochs logged. Fig.8
shows the number of satellites tracked and corresponding
PDOP values.
Table 5 shows the empirical success rates and the mean
computational times for both the standard and the con-
strained LAMBDA method. Note that the aircraft data

Fig. 9: Mean computational time for aircraft data us-
ing rounding constrained solution (R2) and bootstrapping
constrained solution with Hessian (B2). The division be-
tween shrinking, enumeration and minimization is also
shown.
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shows a poorer performance than that of the ground sta-
tion data (compare with Table 4). The lower success rates
can be explained by the higher noise levels in the data and
the presence of multipath, in particular on the data of the
first baseline. The computational times are still fast, al-
though a bit slower than for the static ground station data,
see also Fig.9. Note that the minimization step is still ex-
tremely fast. This is due to the low number of integer vec-
tors that remain in the shrunken search space. The number
of enumerated integer vectors contained in the shrunken
search space is shown in Fig.10. The maximum number
of integer vectors is lower than 23, while in most of the
cases only a single integer vectors remains (first baseline:
80% and second baseline: 90%).

Fig. 10: Number of enumerated integer vectors in the
shrunken search space for baselines I and II of the aircraft
data.

7 CONCLUSIONS
The constrained LAMBDA method exploits the a priori
knowledge of the baseline length l. This leads to a new
objective function for finding the integer least-squares am-
biguities. This objective function not only weighs by how
much the float ambiguity solution differs from an inte-
ger vector, but also by how much the integer ambiguity
constrained baseline solution differs from a sphere with
radius l. Different strategies can be followed for finding
the integer minimizer of the new objective function [12],
[13], [19], [20].
In this contribution we presented experimental results of

the Search and Shrink strategy as introduced in [20]. This
strategy works with bounding functions of the objective
function that are easy to evaluate and it uses an iterative
scheme to shrink the search space. In this way the search
proceeds quickly toward the integer minimizer of the ob-
jective function.
In order to test the method, we processed both simulated
and real data (static and dynamic), focusing on the most
challenging scenario, being single-frequency (L1), single-
epoch GNSS attitude determination. The inclusion of the
baseline constraint shows dramatic improvements in the
success rates. For most of the measurement scenarios,
static as well as dynamic, the constrained LAMBDA me-
thod achieves larger than 90% success rates for single-
frequency, single epoch data. The presence of severe mul-
tipath however can reduce the success rates considerably.
As to the efficiency of the method, the shrinking process
showed to be very successful indeed in all cases treated.
By means of shrinking it was achieved that only a lim-
ited number of integer vectors, often only one, had to be
enumerated to find the sought-for minimizer.
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