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Abstract  
Real-time quality control of GNSS measurements can be 
performed using a single-receiver single-channel approach. 
The local DIA procedure can be utilised for this purpose 
using only observations of the epoch where data are 
collected. A description of the proposed method is given in 
this paper. A geometry-free observation equation model is 
proposed. Due to rank deficiency during initialisation of 
the model, a reparameterisation of the model unknowns 
was performed. In addition, the ionosphere error is 
assumed changing relatively smooth as a function of time 
and its variation from its mean is modelled as a first order 
autoregressive process. For a short time window, the 
instrumental code delay and the phase bias including the 
sum of the initial phase, the phase ambiguity as well as 
instrumental phase bias are treated as constants. The 
dynamic and stochastic modeling of the method is 
presented, and initialisation of the filter is discussed. The 
quality control procedure is given and the internal 
reliability quantified by the Minimal Detectable Bias is 
discussed. 
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1. Introduction 
 
Successful GNSS software should include a pre-processing 
step for screening of the data. During this pre-processing 
step the most severe irregularities in the data can be 
detected and if necessary repaired [1]. Error detection can 
be implemented at receiver level as part of a Receiver 
Autonomous Integrity Monitoring (RAIM) algorithm. 
RAIM techniques are generally based on statistical tests 
that use the redundancy of the model to detect errors in the 
observation. 
 
Real-time quality control of GNSS can be performed using 
a single-receiver single-satellite approach utilizing the 
Detection- Identification- Adaptation (DIA) Method [2]. 
This approach can be applied for single or multi-frequency 
observations. A geometry-free observation equation model 
can be used. The advantages of this approach are: no 
satellite positions need to be known beforehand and thus 
no complete navigation messages need to be read and used, 
and due to its flexibility it can be applied to any receiver 

type and make and under static or kinematic modes. In 
addition, when the above technique is applied for single-
channel (satellite) data screening, one by one, it allows one 
to present the necessary numerical and graphical statistical 
diagnostics and collect the very necessary long term 
statistics of the GNSS PRN specific data quality. This 
paper discusses a proposed method for error detection 
using a geometry-free single-receiver single-channel 
approach during pre-processing of GNSS data.  
 
2.  Single-Channel, Geometry-free Modelling  
 

2.1 Measurement Model and Re-parameterisation 
 

The carrier phase and pseudo range observation equations 
of a single receiver that tracks a single satellite on 
frequency fi (for i = 1, . . . , n) at time instant k can be 
written as: 
 φ��	=	ρ�∗ 	–	µi	Ik	+	b
��	+	εφ�� (1) 

 p��	=	ρ�∗ 	+	µi	Ik	+	b���	+	ε���  (2) 

 
where: 
 ρ�∗ 	=	ρk	+	c(dtr	–	dts)	+Tk (3) 
 
where φ��	 and p��	 denote the observed carrier phase and 
pseudo range code measurements; respectively, with 
corresponding zero-mean noise terms εφ��  and ε��� . ρk is 

the receiver-satellite range, c denotes the speed of light, dtr 
and dts are the receiver and satellite clock errors; 
respectively, and Tk is the tropospheric delay. The 
parameter I denotes the ionospheric error expressed in 
units of range with respect to the first frequency, such that 

for frequency I, the ionospheric coefficient µi = 
������  is 

applied. The parameters b
��  and b��� are the phase bias 

and the instrumental code delay, respectively. The phase 
bias is the sum of the initial phase, the phase ambiguity 
and the instrumental phase delay. 
 
Assuming equal number of phase and code measurements, 
the model given in Eq. (1 & 2) shows that the problem at 
hand is underdetermined. The parameters b
�  and b��  are 
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assumed constant for a short time window. If 
measurements from a second epoch are added, then there is 
no redundancy for a single-frequency receiver, but a 
redundancy of two for a dual-frequency receiver. The rank-
defect is caused by the fact that the information content of 
the observables together with the time-constancy of the 
bias vectors is such that only time-differences of the 
parameters can be determined. One way to take that into 
consideration is to re-parameterize the unknowns in the 
observation equations as follows: 
 ρ�∗∗	=		ρ�∗ 		-	ρ��∗ 			 (4)		 !�∗	=		!� 	-	!�" 	 (5)		 b
�∗ �		=	b
�� +	[ρ��∗ 			–	µi	!�" 	]		 (6)	
    b��∗ �		=	b��� +	[ρ��∗ 			+	µi	!�" 	]	 (7) 

 
Where ko refers to the initial epoch of data processing. 

 
2.2  Dynamic Modelling 

 
The dynamic and stochastic properties of the re-
parameterised range ρ�∗∗ 	in Eq. (4) can be modelled as a 
random walk. It is assumed that no information is known 
about the dynamic behaviour of the object, and thus 
allowing the range to change freely. Accordingly, the 
variance of its stochastic noise may be set to infinity.  The 
dynamic model reads: 
 ρ�∗∗ 	= 	 ρ�'(∗∗ 	+ d)*  (8) 
 

where dρ is the process noise of ρ∗∗. Other approaches can 
include elimination of this parameter in the predicted states 
of the model and consequently from the dynamic model.   
 
The ionosphere error can be further parameterised to 
describe its dynamic variability with time. The ionosphere 
can be assumed changing relatively smooth as a function 
of time and for a short time window, we can assume that 
its mean is constant. Thus, we can decompose the 
ionosphere error into two components; its mean value (I)̅ 
and the deviation from its mean (δI), such that at epoch k 
we have: 
 

Ik = ! ̅+ δIk  (9) 
 

and: 
 !�∗		=	δIk + ! ̅ -	!�� 		 (10)	
 
The temporal correlation of δI, denoted here as (β) can be 
modelled exponentially decaying with time by using a 
first-order autoregressive stochastic process (e.g. 1st order 
Gauss-Markov process) as follows: 
 

  β = e'1|∆4|				 (11) 

where α is the inverse of the correlation time length (time 
constant), and ∆t is the time interval between processing 
epochs. Thus, with small values of α (i.e. large correlation 
time), the temporal correlation function will start large and 
reduces slowly with time, whereas with a large value for α 
(i.e. short correlation time), the correlation starts small and 
quickly damped. For the ionosphere, a correlation time in 
the range of 600 seconds to 2400 seconds can be assumed, 
depending on ionospheric activity, time of day and year, 
and location (latitude). The dynamic model of (δI) can thus 
be taken as: 
 δ!� = 	β	δ!�'( +	d67*    (12) 
 
Where d679 is the process noise for δ!�. For a short window 
of time, the bias terms b
�∗ �		 and	b��∗ � can be modelled as 

constants.  The ionosphere term { ! ̅  -	!�"<	can thus be 
lumped together with these terms, such that the bias terms 
become: 
 b
�9∗∗ 		=	b
�� +	[ρ��∗ 		-	µi	!]̅		 (13)	
    b��9∗∗ 			=	b��� +	[ρ��∗ 		+	µi	!]̅	 (14) 

 
The transition matrix for the unknowns [ρ�∗∗ ,	 δIk, b
�*∗∗ ,	b��*∗∗ ],	 denoted	 by	Φk/k-1,	 between	 the	 times	 k	 and	 k-1,	can	thus	be	given	as:		

Φ�/�'( =	 J1000			
	0	K	0	0		

		0		0		I		0		
		0		0		0		I L			 (15) 

	
2.2  Stochastic Modelling 

 
In the single-channel single-receiver case, no auto-
correlation or cross-correlation is assumed between code 
and phase measurements in the stochastic model, and thus, 
the covariance matrix of the undifferenced measurements 
is a diagonal matrix. The zenith-referenced values of 
standard deviations of phase and code can be taken as 
follows [1]: 
  
Table 1: Standard deviation of undifferenced GNSS 
measurements 
 GPS Galileo 
 L1 L2 L5 E1  E5a E5b E5 E6 
code 
(cm) 

15 15 3.9 6.1 3.9 3.7 0.9 4.4 

phase 
(mm) 

1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2 

 
The variance of phase and code measurements are 
weighted according to the elevation angle, for instance 

using a weight factor of 
(((M(N	OPQ�	(' R�S)		 , with θ is the 

elevation angle in degrees.  
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The covariance matrix of the process noise of the 
unknowns (Qdd) can be given as: 
 

QUU =	 V∞000			
0

σδ7W (1 X βW)00 		0000		
		0			0			0			0Y   (16) 

 
Where		σ[7W  is the variance of the ionospheric error from its 
mean, which is assumed as 1cm2. 
 
3.  Kalman Filtering 
 
In a general form, the GNSS multi-frequency geometry-
free single-receiver single-channel undifferenced  
observations (y) can be formulated in terms of the 
unknown state vector (x) at epoch (k) as: 
 yk	=	Ak	xk	+	ek (17) 
 
with (A) denotes the design matrix. In real time, a 
recursive LS filter (e.g. Kalman Filter) can be applied. The 
dynamic model can be given as:    
    

xk = Φ�/�'( xk-1 + dQ*  (18) 
 
where dQ* is the process noise of the unknowns at epoch k. 
For the functional models, it is assumed that for the epochs 
k and p we have: 
 
D(xo) = QQ�Q� ,		 E(ek)=0, 

C(ek, xo)=0, C(ek,ep) = QPP δkp 

Where D( ), E( ), and C( ) denote the dispersion, 
expectation, and covariance operators; respectively, δkp  = 1 
for k=p, 0 for k ≠ p, and  QPP		is the covariance matrix of 
the residuals. 
 
and for the dynamic model, it is assumed that: 
 
E(dx)=0, C(dQ*, dQ^)=	QUU δkp 

C(dQ*, xo)=0, C(dQ*, ek)=0. 
 
The time update of the recursive filter can be formulated 
as: 
 x_�/�'(	 =	Φ�/�'(		x_�'(/�'(  (19) 

 P�/�'(	 =	Φ�/�'(		P�'(/�'( Φ�/�'(a +	QUU  (20) 
 
where P�/�'(	and P�'(/�'(are the covariance matrices of 
the predicted and estimated unknowns, respectively. For m 
measurements, the measurement update can be applied as 
follows: 
 x_�/�	 =	x_�/�'( + Kk (yk – Ak x_�/�'( )  (21) 

Pk/k = (I – Kk Ak) P�/�'(	  (22) 
 
Kk = P�/�'(		A�a	(Qbb +	A�	P�/�'(		A�a	)'(  (23) 

 
From the Eq. (4-7, 10, 13-14) one can conclude that 
initialisation of the filter for the case at hand, where k = ko, 
can be performed such that for all available phase and 
codes on different frequencies (1 < i ≤ n): 	

xc/c				 =	 de
ef ρ∗∗δ!b
�g�..i∗∗b��g�..i∗∗ jk

kl		=	V 00φ�m(..nP�m(..n Y			 (24) 

 
where ρ∗∗		is	zero	at	k = ko since ρ�∗  equals ρ��∗ , and its 

variance is thus taken zero. δ!�p is assumed equals zero at 
ko. Finally, the initialization covariance matrix is then 
given as: 
 

PQ�/� =	 de
ef0000				

0
σδ7W00 				 00σ
�g�..iW 0 		 		0			0			0			σ��g�..iW	 jk

kl   (25) 

 
where σ
�g�..iW  and σ��g�..iW  denote the phase and code 
variances; respectively, for all frequencies between 1 to n. 
  
4.  Quality Control and Model Validation 
 
For simplicity, since local testing is considered in this 
context, time indices will be ignored in the remaining 
equations. For the measurement model presented in Eq. 
(17), the vector of least squares (LS) observation residuals 
(e_ ) and their covariance matrix (QP_P_ 	) can be used for 
validation of the observations. In statistical testing, one can 
take the null hypothesis Ho to represent an error-free model 
and the mean of the LS residuals will equal zero. The null 
hypothesis can then be defined by: 
 Hc:	y~	N(A	x, Qbb)  (26) 
 
With 
 	e_c~	N(0, QP_�P_�)  (27) 
 
where Qyy is the covariance matrix of the observations, and 
the (o) subscript denotes the null hypothesis. On the other 
hand, the alternative hypothesis Ha is assumed to represent 
the presence of errors in the model. For instance, in the 
presence of a measurement bias in observation j, with 
meantu , the observation equation corresponding to the 
alternative hypothesis representing this bias reads: 
 y	=	A	x	+	cjtj	+	e  (28) 
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where cj is the vector describing the presence of the error 
in the observation j, with zero entries for all its elements 
except 1 for the row element corresponding to the 
observation j. If more than one error is present, the vector 
cj becomes a matrix Cj, with tu  becomes a vector 
comprising the errors, where j here is a vector referring to 
the observations that include these errors. Thus, Cj 

represents the general case, where all possible errors that 
are under consideration for testing can be presented. As a 
result, the mean of the LS residuals will be biased and in 
this general case the alternative hypothesis can be defined 
as: 
 Hw:	y~	N(A	x +	Cutu	, Qbb)  (29) 
 
where the subscript (a) denotes the alternative hypothesis. 

 
4.1  Local testing and error detection  

 
In real-time applications, one may consider examining the 
model at the present epoch using observations only from 
the current epoch. This is referred to as Local Testing [3]. 
For the general case of (m) measurements, (u) number of 
unknowns, and testing (q) number of errors, where q < m, 
the best estimator of the error vector corresponding to 
measurement(s) j that contain the errors can be computed 
as follows: 
 tyu= (Cua	Qbb'(	QP_�P_� 	Qbb'(Cu)'(	Cua	Qbb'(	e_c (30) 

 
where e_c is the values of (e)	 estimated from Eq. (17) under 
the null hypothesis, and the covariance matrix of the best 
estimator of the error vector reads: 
 Qtyztyz = (Cua	Qbb'(	QP_�P_� 	Qbb'(Cu)'(	 (31) 

 
Detection of the presence of model errors in local testing 
can be performed by using the Local Over-all Model 
(LOM) test statistic T{|}, which can be formulated as: 
 T{|} =	e_c	Qbb'(	e_c	     (32) 

 
where one may reject Ho in favour of Ha when: 
 T{|} 	~ 	 χ1W(df, 0)  (33) 
 
where ��W  is the chi-square for a preset significance level 
(α), and (df) is the degrees of freedom, which equal (m-u).  
 
If the detection test passes, then testing stops at the current 
epoch and the same procedure is applied for the next 
epoch. However, if the test fails, identification of the 
possible error(s) should be performed.  
 
 
 
 

4.2  Local identification and Adaptation  
 
Once the presence of model errors is detected, one needs to 
identify the erroneous measurement that causes such model 
error. The characterizing matrix Cj is set to test the 
alternative hypothesis corresponding to each type of 
possible model errors. For local testing, two cases are of 
particular interest: 

- The case of a single outlier in one code or phase 
measurement, i.e. q = 1 and the Cj matrix reduces to a 
vector cj. For instance, in testing the possibility of having 
an error in a single observation (j), cj reads: 

 
      cj = [ 0, 0, 1j, 0,…0n]

T 

 
- The case of multiple outliers, or complete loss of lock 

either in phase or in code, where q > 1 and Cj remains as 
a matrix. For instance, for n frequencies and organizing 
all phase observations to precede code observations in 
our measurement model, and for the case of testing the 
hypothesis that all phase measurements may have errors, 
the Cj matrix reads: 

 Cu =	 � I�O�0�O�� 
 
For outlier identification in testing single observations 
where q = 1, tyu		becomes a scalar, and the test static (wj) 
can be given as [4]: 
 wu =	 tyz�tyz 						or					wu =	 �z�	�����	P_��(�z�	�����		������� 	�����	�z)	     (34) 

 
and the null hypothesis can be rejected in favour of the 
alternative hypothesis when: 
 �wu� 	~ 	N��(0,1)  (35) 

 
In case of testing the possibilities of more than one single 
observation error, i.e. when 1 < q ≤ m - u, Cj remains a 
matrix with dimensions m × q and the identification test 
can be formulated as follows: 
 T = 	tyua	Qtyz	tyz'( 	tyu   (36) 

 
and Ho can be rejected in favour of Ha when: 
 T	 ~ 	 χ1W(q, 0)  (37) 
 
For the two cases mentioned above, where different 
alternative hypotheses are examined, we have mixed size 
cases (i.e. q = 1 when considering outliers in the 
observations and q >1 for the case of multiple outliers). 
Thus, a unified criterion needs to be set to compare the 
statistical testing outcomes of different alternative 
hypotheses. This can be achieved by comparing the P-



 
2010 International Symposium on GPS/GNSS 
Taipei, Taiwan. 
October 26-28, 2010. 

 

5 
 

value under the χ2 distribution. Thus, both wj and Tj 
(where Tu =	wuW)  are computed for the case of q=1, but 
the probability of the latter can be used (as it has χ2  
distribution) in the sought comparison between different 
alternative hypotheses. Next, all alternative hypotheses are 
ranked according to their P-value in a descending order, 
where hypothesis of smallest P-value put on top of the list 
as the most suspected error, and the one associated with the 
largest P-value in the bottom of the list. 
 
Once possible error, or errors, is/are identified; the 
estimated values of the unknowns, which were originally 
determined as x_ 	assuming an error-free model (of the null 
hypothesis) can be adjusted to adapt for the presence of the 
errors as follows: 
 x_w =	x_c X	Q�		Cu	tyu      (38) 

 
where  x_w is the adapted vector of the unknowns, and its 
adapted covariance matrix QQ_�Q_�  can be determined from 
its model-free equivalent	QQ_�Q_� , such that: 
 QQ_�Q_� =	 	QQ_�Q_� +	Q�Cu	Qtyztyz 	Cua	Q�a    (39) 

 
where Qk matrix is determined from: 
 Q� = (Aa	Qbb'(	A)'(	Aa	Qbb'(   (40) 
 
After identification and before finalizing the adapted 
values of the unknowns, another cycle of detection and 
identification has to be performed [6]. In this case, the 
detection test given in Eq. (32) has to be performed, but 
with reduced df by the number of the found error(s), and 
replacing (e_c) by their updated values of the LS residuals 
(e_w), where: 
 e_w = 	y X y_w     (41) 

 
and 
 y_w = 	A	x_w +	Cu	tyu    					 (42) 

 
4.3 The Minimal Detectable Bias  

 
In quality control practice, internal reliability, quantified 
by the Minimal Detectable Bias (MDB) can be computed 
even before actual measurements have been carried out 
using only a functional model and the expected stochastic 
properties of the data. The MDB is a measure for the size 
of the errors that can be detected with the model with a 
certain power and probability of false alarm [1, 5]. The 
MDB can be applied to a single receiver geometry-free 
model. To compute the MDB, the noncentrally parameter 
(λo) needs first to be determined, which can be computed 
based on pre-set values of the probability of false alarm 

(α), power of the test (γ), and the number of possible errors 
q (number of alternative hypotheses), such that: 
 

 �p = f(α, γ, q)  (43) 
 
When q=1, the MDB can be computed from: 
 MDB =	 �tyu� = 		� ��(�z�	�����		������� 	�����	�z)   (44) 

 

 
5.  Summary  

 
The paper presents the procedure of quality control of 
GNSS measurements using a single-channel single-
receiver approach that can be applied in the pre-processing 
stage for any GNSS system measurements. The proposed 
functional, dynamic and stochastic models are described 
and initialisation of the filter is given. The process of 
detection of a single or multiple measurement errors that 
may take place at one epoch is illustrated.  Identification is 
performed by ranking the test statistic according to their P 
values. The adaptation process is discussed, which is 
performed to adjust the unknown parameters if an error is 
detected.  
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