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INTRODUCTION

  In order to successfully use GNSS software under 
operational conditions, the software needs to be 
able to handle errors in the data. For this purpose a 
pre-processing step is usually added to the software 
to do a first screening of the data and to reduce the 
number of measurement errors that have to be 
handled during the final processing. During this 
pre-processing step the most severe irregularities in 
the data are detected and if necessary repaired. This 
makes the software more robust against errors that 
can occur under difficult conditions. Error detection 
can be implemented at receiver level as part of a 
Receiver Autonomous Integrity Monitoring 
(RAIM) algorithm. RAIM techniques are generally 
based on statistical tests that use the redundancy of 
the model to detect errors in the observation.

MINIMAL DETECTABLE BIAS

    The Minimal Detectable Bias (MDB) is a 
measure for the size of the errors that can be 
detected with a certain power and probability of 
false alarm [1]. The MDB can be computed even 
before actual measurements have been carried out, 
using only a functional model and the expected 
stochastic properties of the data. In order to 
compute MDBs the type of error that is expected 
must be specified. In practice this means that 
MDBs are computed for different types of errors 
that can be expected in the data, such as outliers 
and slips in the data at different epochs. Therefore, 
the MDB is a very useful tool to assess the size of 
possible errors that can be detected, either during 
pre-processing of pseudo-range and carrier phase 
data, or in the final positioning, velocity and time 
computation step. Closed-form expressions are 
given for the MDBs of GPS data for single-baseline 
models in [2]. The impact of a weighted 
ionospheric pseudo observable is investigated in [3] 
and the impact of cross correlated observables in 
[4].
    This contribution investigates the feasibility of 
error detection during pre-processing of GNSS 
data. For this reason the concept of RAIM and in 
particular internal reliability (quantified by the 
MDB) is applied to a single receiver geometry-free 
time differenced model, focusing on multi-
frequency GPS and Galileo measurements. The 
MDB is defined as follows.
  Under the null hypothesis 0H , biases are assumed 

absent and we have

   0 : , yH E y Ax D y Q  (1)



  where E and D represent the expectation and 
dispersion, y is the vector of normally distributed 

observations with covariance matrix yQ , A is the 

design matrix, and x is the vector of unknown 
parameters. For the alternative hypothesis aH a 

bias vector yb is introduced that defines the model 

error

   : ,a y yH E y Ax b D y Q   (2)

The bias vector yb can be decomposed in C , 

where C specifies the type of model error and 
is the size of the model error, or bias. C is used to 
specify in which observations the bias is present.
The term bias here should not be confused with the 
more restrictive (and more or less constant) 
instrumental biases in the observations. In this 
paper a bias simply means a systematic error in the 
data as specified by the vector C. The term bias is 
used to distinguish it from purely stochastic errors 
in the data as specified by the co-variance matrix of 
the observations yQ . 

  The generalized likelihood ratio test to test 0H

against aH is [5]:

reject 0H if  2 ,0qT q (3)

where  2 ,0q is the critical value for the chi-

square distribution with q degrees of freedom and 

probability of false alarm  , and test statistic qT :

  11 1 1 1
ˆˆ ˆT T T

q y y e y yT e Q C C Q Q Q C C Q e
    (4)

where ê is the least-squares residual vector and êQ

the corresponding covariance matrix. Under 0H

and aH the statistic is distributed as follows:
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with the non-centrality parameter  :

1 1
ˆ

T T
y e yC Q Q Q C     (6)

The non-centrality parameter depends on the 
chosen detection power 0 and probability of false 

alarm 0 . The results in this paper are presented 

for 0 0.80  and 0 0.001  , which gives 

0 17  . For many GNSS applications and 

especially for safety of life applications,  will be 

set to a larger value and  will be set to a much 
smaller value. This will increase the value of  , 
which in turn increases the MDBs on which it acts 
as a scale factor. For one-dimensional biases C is a 
vector and  is a scalar known as the minimal 
detectable bias. For two or more-dimensional biases
(6) describes an ellipse or (hyper)ellipsoid of bias
combinations on the observations which can just be 
detected with the given power and probability of 
false alarm. 

FUNCTIONAL MODEL

  Two common models in GNSS processing are the 
geometry-based model and the geometry-free 
model. With the geometry-based model all 
receiver-satellite ranges are decomposed in three 
coordinate directions and the processing is 
performed for all satellites combined. With the 
geometry-free model the receiver-satellite ranges 
are not decomposed and processing is performed 
for each satellite separately. The geometry-based 
model generally has a higher redundancy than the 
geometry-free model which results in a stronger 
model. However, for the geometry-based model the 
satellite positions are required, while the geometry-
free model does not use the satellite positions. This 
is an advantage for the geometry-free model: 
satellite orbit and clock data are not required and 
the processing is obviously also insensitive to 
mistakes in the satellite orbit and clock data, as well 
as tropospheric delay. An additional advantage of 
the geometry-free model is that, due to the single 
satellite approach, data from any GNSS can be 
processed without complications. This makes the 
geometry-free model very well suited for pre-
processing techniques. Using a single receiver 
model also has the advantage that it can be 
implemented inside a GNSS receiver.
  As mentioned before, the redundancy of the 
geometry-free model is generally not very high 
compared to the geometry-based model, because 
the observations are processed separately for each 
satellite. However, with the emergence of new and 
improved navigation systems and the upgrades of 
existing systems the number of observations made 
to one satellite is increased thus increasing the 
redundancy. A third frequency is added to the GPS 
system and the Galileo system will even use 4 
frequencies. In this contribution the impact on 
reliability due to the increased number of available 



frequencies and the improved code accuracy is 
investigated. The MDBs are computed using a 
range of realistic values for the variance and 
correlation of the observations.
  For the geometry-free model, the observation 
equations for a single code C and phase L
observation on carrier frequency i are as follows:

i C C

i L L

C g I

L g I A

  
   

   
    

(7)

where g is a lumped parameter containing the 
receiver satellite range, the tropospheric delay and 
the clock biases, i is the ionospheric dispersion 

factor equal to the carrier frequency of L1 squared 
divided by the carrier frequency of the observable 

under consideration squared ( 2 2
1L Lif f ), I is the 

ionospheric delay on L1,  the carrier wavelength, 
A the carrier phase ambiguity, C and L the code 

and phase instrumental and multipath delays and 

C and L the code and phase noise with 

{ } 0CE   and { } 0LE   .

  For a single receiver setup, which is considered in 
this paper, the commonly used single or double 
differenced observations can obviously not be 
formed. This has a number of important drawbacks. 
Firstly, instrumental delays, which are eliminated in 
the double differenced observations, are not 
eliminated in a single receiver setup. Secondly, the 
ionospheric delay in the original observations is 
much larger than the ionospheric delay in the single 
difference between receivers. Therefore, for the 
single receiver setup a time differenced model is 
used instead to overcome these drawbacks. The 
time differenced model is comparable to assuming 
that the instrumental biases are constant in time
(although certain linear combinations of 
instrumental biases will be absorbed by time-
dependent parameters). Furthermore, in the time 
differenced model, the ionosphere fixed and 
weighted approaches are equivalent to assuming 
that the ionospheric delay is a constant or a zero 
mean velocity process. In a single difference model 
it is assumed that the differential ionospheric delay 
is zero or a zero mean process. This assumption is 
of course not applicable for a single receiver setup. 
For time differenced processing, a first step is to 

use the time difference between two consecutive 
epochs. In this time difference many unknown 
parameters are eliminated from the observations. A 
second step is to use more epochs of data, a fixed 
window or all previous epochs, to detect biases. 
The MDB then depends also on the epoch at which 

the error occurs in the observations and the length 
of the data window.
  In the difference between observations from two
consecutive epochs, the multipath and instrumental 
delays C and L are greatly reduced and, under 

the null hypothesis, the carrier phase ambiguities 
are eliminated because they are constant as long as 
no cycleslip occurs [6]. This leaves the time 
differenced lumped parameter g and ionospheric 

delay I :

 
 

E C g I

E L g I
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

    

    
(8)

Three different approaches of modelling the 
ionospheric delay are presented in this paper. With 
the ionosphere-constant approach the ionospheric 
delay is fixed to a constant value which is 
consequently eliminated from the time differenced 
observations:

 1
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L

     
         

(9)

With the ionosphere-float approach no constraint is 
put on the ionospheric delay. The time differenced 
ionospheric delay is estimated for each time 
difference in the model:
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(10)

With the ionosphere-weighted approach a pseudo 
observable for the time differenced ionospheric 

delay I  is added to the model:
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(11)

This pseudo observable can be based on an 
ionospheric model or it can be set to zero. The 
variance of this pseudo observable, which depends 
on the source of the observable, determines how 
restrictive the constraint on the time differenced 
ionospheric delay is. Two limiting cases are 

  0
~ ID and   ID

~
which makes the 

ionosphere-weighted model equivalent to the 
previously introduced ionosphere-fixed model and 
ionosphere-float model, respectively.



  For dual frequency measurements, the time 
differenced ionosphere float model is very similar 
to the un-differenced ionosphere float model.   For 
the other time differenced models, or more 
frequencies, equivalent models can be setup using 
un-differenced observations, which will then
include extra parameters for instrumental biases 
and/or constant ionospheric delay (in case of 
ionosphere fixed).  

STOCHASTIC MODEL

  To determine the MDBs, an appropriate stochastic 
model must be defined to accompany the functional 
model. First the stochastic properties of the 
undifferened code and phase observables are 
defined. The stochastic properties of the time 
differenced GNSS observations can then be 
constructed from the undifferenced observations 
with the following operator:

    2 1 1n k kD    I I 0 0 I (12)

where  is the Kronecker product, iI is an 

identity matrix of order i , k the number of epochs
and 0 is a 1k  column vector with zeros, and n
the number of frequencies. The covariance matrix 
of the time differenced code and phase observations 
is:

TQ D QD   (13)

where Q is the covariance matrix of the 
undifferenced observations. 
  When the ionosphere-weighted approach (11) is 
used, the stochastic properties of the time 
differenced ionosphere pseudo observable 

I
Q  are 

appended to the covariance matrix of the time 
differenced observables Q of (13). In the time 

differenced processing, which is considered in this 
contribution, the following model for the 
ionosphere delay is used:
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with I the derivative of the ionospheric delay and 

t the time interval. I is modeled as a white noise 

process [7], with { ( )} 0E I t 

( { ( )} constantE I t  ).

Also, there is no correlation between the GNSS 
measurements and the ionospheric pseudo 
observables.
  In this paper, results are presented for different
values for the variance of the ionosphere pseudo 
observable that span the range from the ionosphere-
float to the ionosphere-fixed model. The standard 
deviation of the time differenced ionospheric 
pseudo observable depends on the temporal 
variation in ionospheric delay, the first time 
derivative in particular, and the time difference 
between the observations. The value for this 
standard deviation can be determined by analyzing 
estimated time differenced ionospheric delays using 
actual data. For the exploratory computations 
presented in this paper a representative value for
moderate ionospheric conditions at mid-latitude
was determined. Under these conditions the time 
derivative of the ionospheric delay on GNSS 
signals was found to be less than 1 /mm s on 
average with a standard deviation in the order of 
1 /mm s .
  Table 1 shows the standard deviations of the code 
and phase observables that have been used in this 
paper as a starting point. However, for some 
specific results the standard deviation of the code 
observables has also been varied to show the 
impact of the code precision on the MDBs. The 
values in table 1 were taken from [8] and it has 
been assumed that the performance of the GPS L5 
signal will be comparable to the Galileo E5a signal.

Table 1. Standard deviation of undifferenced 
observables 

GPS Galileo
L1 L2 L5 E1 E5a E5b E5 E6

Code
(cm)

15 15 3.9 6.1 3.9 3.7 0.9 4.4

Phase
(mm)

1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2

  All results in this paper are presented for a 
stochastic model without correlation between the 
observations unless explicitly stated otherwise. Two 
types of correlation between the observables have 
been considered: time correlation of the code 
measurements and cross-correlation between the 
phase measurements. Occurrences of these types of 
correlation on the observations from GNSS 
receivers were presented in e.g. [6] and [9].
  The code observations are assumed to be 
exponentially correlated in time (see e.g. [10]), with 
a constant variance. For k epochs this gives the 
following dispersion for each code observable i : 



 
 

 

1

2
2

1 2

1 1

2 1

1

k

k

Ci Ci

k k

Ci

Ci
D Q

Ci k

 
 



 





 

    
    
                     





    



(15)

where Ci is the standard deviation of code 

observable i and  is the time correlation 

coefficient. If there is no time correlation ( 0  ), 
the dispersion of the code observables simplifies to 

2
C k I , but CiQ will still be a non diagonal matrix. 

Since no cross correlation between the code 
observables is considered, the CQ matrix of all 

code observations is a block-diagonal matrix, with 
elements 1C CnQ Q .

  The phase observables are assumed to be 
uncorrelated in time (for a measurement rate of 
1Hz, this is a valid assumption if no smoothing is 
applied [6]). However, for some types of receivers 
cross correlation between the phase observables 
cannot be neglected [9]. When cross correlation is
not neglected, this results in the following 
covariance matrix for the phase observations.

1 1 2 1

1 2 2 2

1 2

L L L L Ln

L L L L Ln
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Q Q Q
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   



(16)

where LiLj LiLj Li Lj kQ    I with , 1, ,i j n  . 

When there is no cross correlation, the covariance 
matrix of the phase observations simplifies to a 
block-diagonal matrix with elements 

kLnkL  22
1   .

  Assuming that the cross correlation between code 
and phase measurements can be neglected, the Q
matrix of all undifferenced code and phase
observations is a block-diagonal matrix, with 
elements CQ and LQ . The covariance matrix of the 

time differenced code and phase observables can 
now be constructed from (13).

TIME- VERSUS UNDIFFERENCED

  In this paper a time-differenced approach was 
chosen in order to eliminate carrier phase 
ambiguities and time constant instrumental biases 
from the observation equations. 
  The advantages of the time differenced model 
compared to equivalent undifferenced models are:

 More compact model; no ambiguity terms, 
no instrumental biases; no constant 
ionosphere

 Hypotheses for slips become conventional 
alternative hypotheses (outliers)

 It is straightforward to model ionospheric 
delays as a zero mean process in the 
derivative

The disadvantage is of-course that in case of un-
correlated GNSS observations, time correlation in 
the time differenced GNSS measurements is 
introduced. However, in case the observations 
already have time correlation this is not a 
disadvantage.
  Typical for the time-differenced processing is also 
the sliding window approach, or finite window 
length. The minimum window length is 2, the 
maximum length is the length of the data segment, 
but in practice the window length can be much 
shorter as is shown in our results.  

MODEL ERRORS

  Several types of model errors can be considered. 
 A slip in the phase observations of a single 

frequency. C then becomes a vector, which 
contains in the time differenced model only 
zeros except for a one at the entry that 
corresponds to the frequency and time 
differenced observation where the slip occurs. 

 A simultaneous slip in the phase observations of 
each of the tracked frequencies. This 
corresponds to a momentary loss of lock of the 
receiver. C is now a matrix with a column for 
each tracked frequency, with each column 
containing one non-zero entry corresponding to 
the appropriate frequency and time differenced 
observation.

 An error in model of the time differenced 
ionospheric delay. For the ionosphere-weighted 
approach this is an error in the time differenced 
ionospheric-pseudo observable (C is a vector 
with zeros and a one corresponding to the biased
pseudo observation); for the ionosphere-fixed 
approach this corresponds to an incorrect 
assumption of constant ionospheric delay ( C is 
a vector with ionospheric dispersion factors  ).

 An outlier on a single code observation. C
again becomes a vector, which contains only 
zeros except for a one at the entry that 
corresponds to the code observable and time 
difference right before the outlier directly 
followed by a minus one entry.

In this contribution only the first three types of 
model errors are considered..



RESULTS AND DISCUSSION

L1 carrier phase slip at the current epoch

  Figures 1 and 2 show the MDB of a slip in the L1 
carrier phase observation at the current epoch for 
respectively the ionosphere float and ionosphere 
fixed model, using different combinations of code 
and carrier phase data, and as function of the 
window length. There is a clear improvement in 
real-time bias detection, in other words decreasing 
MDBs with increasing number of used epochs 
(window length) and available frequencies. After 
the initial sharp decrease of the MDBs with 
increasing window length, the decrease becomes 
much more gradual for larger window sizes. 
Therefore, the use of a short window length will 
generally suffice, thereby limiting the required 
processing power.
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Fig 1. MDB for a slip on L1 for the ionosphere float
model versus the number of epochs.
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model versus the number of epochs.

  The combinations of three and four frequencies 
perform significantly better than the dual frequency 
combinations, as can be expected because in the 
time differenced model the number of unknown 

parameters does not depend on the number of 
frequencies. The GPS L1 L2 combination for the 
ionosphere float model, figure 1, performs 
significantly worse than the L1 L5 combination due 
to the low precision of the L2 code compared to L5, 
which cannot be compensated by the smaller 
ionospheric dispersion factor for L2. On the other 
hand, in the ionosphere fixed model, figure 2, the
precision of the code observables has almost no 
impact on the MDBs. Also, the frequencies of the 
carrier waves play no role because the dispersion 
factors are removed with the ionospheric delay. For 
the ionosphere-fixed model, combined with a one-
dimensional error and dual frequency data, the 
MDBs only depend on the more precise phase 
observables, which can be explained as follows. 
The number of time differenced phase observations 
is  1kn for n frequencies and k epochs. For 
the ionosphere-fixed model and a one-dimensional 
bias the number of unknown parameters is k
( 1k time differenced geometric terms and 1
bias). This means that for 2k there are sufficient 
time differenced carrier phase observables to 
compute all unknown parameters including the 
MDBs under investigation.
  For the ionosphere-float model the number of 
unknown parameters is   112 k and the 
dispersion factors are present in this model, thereby 
complicating the results. For dual frequency data, 
the number of unknown parameters is always larger 
than the number of time differenced carrier phase 
observables by 1, meaning that the MDBs depend 
to some extend on the code observations. The 
impact of the dual frequency code precision on the 
MDBs for the ionosphere-float model is further 
investigated in figure 3.
  Figure 3 displays the impact of the precision of the 
code observations on the MDB for two dual 
frequency combinations L1 L2 and L1 L5. Three 
different values for the standard deviation of the L1 
code observable have been considered. The 
horizontal axis indicates the standard deviation of 
the code observable of the second frequency and 
the vertical axis shows the size of the MDB for a 
slip on the L1 frequency. The values for the 
standard deviation of the code observables depend
on the satellite elevation in combination with the 
receiver antenna gain and the code under 
consideration. On the one hand, a (future) GNSS 
signal with a high code rate, tracked from a satellite 
with a high elevation angle, could have a standard 
deviation of the code observable in the order of a 
few centimeters. On the other hand, the GPS C/A 
code tracked from a satellite with a low elevation 
angle could have a standard deviation of a few 
decimeters. Close inspection of the lines in figure 3 



reveals that, when the standard deviation of the 
code observations of the second frequency is
significantly smaller than the standard deviation of 
the code observations of the L1 frequency, the 
actual value of the code standard deviation for the 
L1 frequency is of little importance. This indicates 
that the size of the MDB is mostly determined by 
the standard deviation of the code observable with 
the highest precision. Also it is clear that the MDBs 
for L1 L5 are larger than for L1 L2 if the standard 
deviation for the L2 and L5 code are equal. This is 
because the ionospheric dispersion factor for L5 is 
higher than for L2 (1.79 respectively 1.65), which 
has a positive impact on the determination of the 
ionospheric delay, but a negative effect on the 
determination of the lumped parameter g and on 
the MDBs. This effect is shown in more detail later.
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Fig 3. MDB for a slip on L1 for the ionosphere float 
model as a function of the precision of the code for 
the second frequency.

  Figure 4 shows the MDB for the ionosphere 
weighted model for various values of the standard 
deviation of the time differenced ionospheric 
pseudo observable. As mentioned before, the 
ionosphere-weighted model has two limiting cases: 
for very precise ionosphere pseudo observations the 
ionosphere-weighted model behaves like the 
ionosphere-fixed model and for very imprecise 
pseudo observations it behaves like the ionosphere-
float model. This is very clearly shown in figure 4
where the MDB for a slip on the first frequency is 
displayed versus the standard deviation of the time 
differenced ionospheric pseudo observable. At the 
right side of the figure the pseudo observable is 
assumed to have a very low precision and the 
MDBs have the same size as for the ionosphere-
float model. When the standard deviation of the 
pseudo observable decreases to the order of the 
standard deviation of the code observables, the 
MDBs start to drop significantly. When the pseudo 
observable reaches the precision of the phase 

observables, the MDBs get close to the level of the
ionosphere-fixed model and do not decrease any 
further. As mentioned before, for moderate 
conditions, the noise on the time derivative of the
ionospheric delay is in the order of 1mm/s. This 
means that for st 1 the ionosphere-weighted 
model will be close to the ionosphere-fixed model 
for the purpose of cycleslip detection. When a 
measurement time interval of 30s or 60s is used, the 
weighted model behaves much like the ionosphere-
float model but, especially for dual frequency GPS 
data, the MDB is still significantly smaller than for 
the ionosphere-float model. For a measurement 
time interval of more than a few minutes, using the 
ionosphere-weighted model no longer gives an 
advantage over the ionosphere-float model.

Fig 4. MDB for a slip on L1 for the ionosphere 
weighted model versus the precision of the 
ionospheric pseudo observable.

  The ionospheric pseudo observable itself can also 
contain an error. This could be the occurrence of 
heavy scintillation or the passage of a travelling 
ionospheric disturbance (TID). Under these 
conditions the model of equation (14) is no longer
valid. The MDB in the pseudo observable is shown 
in figure 5 as a function of

I
~ . When the standard 

deviation of the pseudo observable increases 
beyond 3 cm, the MDB increases with a constant 
ratio for all signal combinations, this ratio is simply 
the square root of the non-centrality parameter  . 
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Fig 5. MDB for an error in the time differenced 
ionospheric pseudo observable versus the precision of 
the ionospheric pseudo observable.

  In figure 6 the dotted lines show the effect of time 
correlation of the code observations on the MDB. A 
value of  =0.5 is used in equation (15) for the 
time correlation coefficient between consecutive 
epochs of 1Hz data [6]. Positive time correlation 
decreases the variance of the time differenced 
observations, thereby decreasing the MDB. If the 
time correlation is a result of smoothing, the 
improvement in the MDB can be compared to the 
improvement that an increase in the number of 
observations would have, since one smoothed 
observation is actually based on a number of ‘raw’ 
observations. This improvement diminishes when 
the number of epochs in the model is increased. 
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Fig 6. The impact of time correlation of the code 
observations on the MDB for a slip on L1 (solid 
without correlation; dotted with correlation of 
 =0.5).

L1 carrier phase slips at previous epochs

  Figure 7 illustrates the effect on the MDB for the 
ionosphere float model of the epoch at which the 

error occurs l relative to the current epoch k . The 
most challenging situation is real-time error 
detection, where the error occurs at the current 
epoch ( kl  ), as was shown in figure 1. 
Comparison of the line for kl  and the line for

1 kl shows that an error in the current epoch,
that can just be detected with a large window size, 
can be detected one epoch later with a window size 
of only 4 epochs. This shows how challenging real-
time detection is compared to near real-time 
detection. Therefore, if near real-time detection is
acceptable for the application at hand, this could be 
a way to increase detection performance and 
decrease the computational burden.
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Fig 7. MDB for a slip on L1 for the ionosphere float 
model versus the number of epochs k and for 

different epochs at which the error occurs l .

Carrier phase slips at other frequencies

  So far only carrier phase slips on the L1 frequency 
were considered. For a carrier phase slip on a 
different frequency the results are very similar. 
However, the actual values will depend on the 
carrier frequency combination and the carrier 
frequency on which the slip occurs.
  Figure 8 shows the MDB for a slip on one of the 
phase observables of dual frequency data as a 
function of the carrier frequencies. The solid lines 
show the MDB for a slip on the first carrier phase 
observable which is displayed in the legend. The 
horizontal axis shows the frequency of the second 
carrier phase observable. The line corresponding to 
the L2 phase observable shows that the MDB has a 
minimum value when the second phase observable 
has the same frequency. This would correspond to a 
receiver tracking two identical, but independent 
signals from the same satellite. The MDB increases 
with increasing distance between the two 
frequencies, which results in the largest MDBs in 
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the figure for a carrier frequency combination 
including L1 and E5a.
  The dotted lines show the MDB for the same 
carrier frequency combinations, but now for a slip 
on the second phase observable. Careful inspection 
of the figure reveals that for a given frequency 
combination the MDB is largest for a slip on the 
lowest frequency (largest dispersion factor  ).

E5a E5 E5b L2 E6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Second carrier frequency (Hz)

M
D

B
 (

m
)

L1

L2

E5a

E5b

E6

Fig 8. MDB for a slip on the first (solid) or second 
(dotted) phase observable of dual frequency data as a 
function of the carrier frequency of the second phase 
observable. The carrier frequency of the first phase 
observable is given in the legend.

Carrier phase slips on multiple frequencies

  In this section, simultaneous slips on all tracked 
phase observables are considered. This type of error 
corresponds to a momentary loss of lock of a 
receiver tracking a satellite, that can e.g. result from 
signal blockage. As mentioned before, C now 
becomes a matrix with a column for each of the 
tracked frequencies. This results not in a single 
value for the MDB, but in an ellipse or 
(hyper)ellipsoid, depending on the number of 
frequencies, described by equation (6).
  The principal axes of the ellipse or 
hyper(ellipsoid) can be determined by an 

eigenvalue decomposition of  -11 1
ˆ

T
y e yC Q Q Q C  . 

The eigenvectors then give the principal axes and 
the MDB along these axes is equal to the square 
root of the eigenvalue times the non-centrality 
parameter  .
  Figure 9 and table 2 show results for the MDB 
ellipse for a simultaneous slip on both frequencies 
of dual frequency data. Figure 9 shows that the 
MDB ellipse is very elongated, showing that certain 
combinations of simultaneous biases on L1 and L2 
are more difficult to detect than others. The first 
column in table 2 gives the standard deviation of 
the time differenced ionospheric pseudo-
observation and its two limiting cases: ionosphere 

float and ionosphere fixed. The elongation of the 
ellipse is displayed in the right most column 
showing the semimajor axis of the ellipse divided 
by the semiminor axis. The MDB along the major 
axis and the direction of the major axis are 
displayed in column two and three, respectively.
For the ionosphere-float model considered here, the 
weakest direction for error detection is given by the 
unit vector (0.62, 0.79)T. In this direction a bias of 
7.27 m can just be detected with the chosen power 
and probability of false alarm. This result reveals a 
important weak point of cycleslip detection with an 
ionosphere-float model. After a momentary loss of 
lock to a satellite, specific combinations of 
simultaneous slips can be present in the receiver 
data which are very difficult to detect. 
  The weakest direction for cycleslip detection 
depends on the ionospheric dispersion factors  . A
combination of slips of unknown size on both phase 
observables of dual frequency data with a time 
differenced model, is comparable to an 
undifferenced model with unknown phase 
ambiguities. The directions of the principal axis of 
the ellipses presented in table 2 are therefore 
closely related to those pertaining to the well-
known linear combinations used for ambiguity float 
estimation.
  For the ionosphere-weighted approach, the MDB 
ellipse shrinks and becomes less elongated when 
the precision of the ionospheric pseudo observable 
increases. The weakest direction also changes 
slowly, until it becomes equal to the line 

21 LL  for the ionosphere-fixed model. At this 

point the uncertainty in the lumped parameter g
becomes the dominant factor instead of the 
uncertainty in the ionospheric delay I . This 
uncertainty, which again results in a very elongated 
ellipse, impacts each of the phase observables 
identically, resulting in the weakest direction for 
cycleslip detection given by 21 LL  for this 
situation.
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  Tables 3 and 4 display similar results as table 2
but now for, respectively, three and four frequency
data. Only the major axis is presented in this paper 
because in this direction the largest undetected slips 
can occur and the improvement in this direction 
resulting from the ionospheric pseudo observable is 
most important. Analogous to the two dimensional 
case the weakest direction for the ionosphere-fixed 
model is along the line 1Li L   for 1i n  .

When the precision of the ionospheric pseudo 
observable increases the elongation of the ellipsoid 
first decreases significantly and finally increases 
slightly again when the model starts to behave as 
the ionosphere-fixed model.

Table 2. Two dimensional MDB ellipses

I
  

 max direction major axis  
 


min

max

(m/s) (m) (L1, L2)T

float 7.2697 (0.62, 0.79)T 69
1 6.6122 (0.62, 0.79)T 63
0.3 4.0199 (0.62, 0.78)T 39
0.1 1.7548 (0.64, 0.77)T 19
0.03 0.9916 (0.69, 0.73)T 20
0.01 0.8900 (0.70, 0.71)T 45
0.003 0.8777 (0.71, 0.71)T 99
0.001 0.8766 (0.71, 0.71)T 125
fixed 0.8765 (0.71, 0.71)T 129

Table 3. Three dimensional MDB ellipsoids

I
  

 max direction major axis  
 


min

max

(m/s) (m) (L1, L2, L5)T

float 6.3597 (0.49, 0.60, 0.63)T 841
1 6.1363 (0.49, 0.60, 0.63)T 811
0.3 4.7020 (0.49, 0.60, 0.63)T 622
0.1 2.2065 (0.49, 0.60, 0.63)T 292
0.03 0.7829 (0.51, 0.60, 0.62)T 103
0.01 0.4363 (0.55, 0.59, 0.59)T 58
0.003 0.3769 (0.57, 0.58, 0.58)T 50
0.001 0.3712 (0.58, 0.58, 0.58)T 54
fixed 0.3705 (0.58, 0.58, 0.58)T 57

Table 4. Four dimensional MDB hyper-ellipsoids

I
  

 max direction major axis  
 


min

max

(m/s) (m) (E1, E5a, E5b, E6)T

float 3.1742 (0.42, 0.54, 0.53, 0.50) T 451
1 3.1509 (0.42, 0.54, 0.53, 0.50) T 448
0.3 2.9393 (0.42, 0.54, 0.53, 0.50) T 418
0.1 2.0136 (0.42, 0.54, 0.53, 0.50) T 286
0.03 0.7913 (0.43, 0.54, 0.53, 0.50) T 112
0.01 0.3585 (0.46, 0.52, 0.52, 0.50) T 51
0.003 0.2623 (0.49, 0.50, 0.50, 0.50) T 37
0.001 0.2521 (0.50, 0.50, 0.50, 0.50) T 38
fixed 0.2508 (0.50, 0.50, 0.50, 0.50) T 40

Impact of cross correlation

  In figure 10 the impact of cross correlation 
( 9.0LiLj ) of the phase observations is 

presented. Comparison of the dotted lines (with 
cross correlation) to the solid lines (without cross 
correlation) reveals that the MDBs for three or 
more frequencies decrease if the phase observables 
are cross correlated.
  This decrease of the MDB for cross correlated 
phase observations, does not occur for more 
dimensional errors. The direction of and MDB 
along the principal axis of the triple frequency 
MDB ellipsoids displayed in table 2 are, in fact, not 
impacted at all by cross correlation of the phase 
observables. The shape of the ellipsoid does change 
and becomes even more elongated for cross 
correlated phase data. This means that errors in 
directions different from the principal axis can be 
detected more easily when the phase observables 
are cross correlated. However, it is important to 
note that strong correlation between the observables 
might well influence the type of errors that will 
occur on the data. Therefore, one should not jump 
to the conclusion that cross correlation improves 
error detection.
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Fig 10. The impact of cross correlation of the phase 
observations on the MDB for a slip on L1 (solid 
without correlation; dotted with correlation).

CONCLUSIONS

  In this paper the impact of additional GNSS 
frequencies and improved code accuracy on the 
minimal detectable biases for a single receiver time 
differenced geometry-free model has been 
presented. The single receiver time differenced 
geometry-free model is well suited for a pre-
processing step for GNSS software, and can be 
implemented inside a GNSS receiver for on-the-fly 
bias detection. 
  The size of model errors that can be detected with 
a certain power and level of significance (quantified 
by the MDB) decreases with increasing number of 
used epochs and available frequencies, as expected. 
Increased precision of the code observables 
improves the MDBs for the ionosphere float model, 
but have almost no impact on the MDBs for the 
ionosphere-fixed model. This was explained by an 
analysis of the redundancy of the model. If there 
are more phase observations than unknown 
parameters, the code observations are not needed 
for the bias detection. The size of the MDB in the 
ionosphere float model is mostly determined by the 
standard deviation of the code observable with the 
highest precision.
  To bridge the gap between the ionosphere-float 
and ionosphere-fixed model, an ionosphere-
weighted model was introduced, with a time 
differenced ionospheric pseudo observable. For 
representative values of the standard deviation of 
the time differenced ionospheric pseudo observable 
and a measurement interval of 1s , the MDBs for 
the ionosphere-weighted model are comparable to 
ionosphere-fixed values. For a measurement 
interval of 30s the MDBs for the ionosphere-
weighted model are still significantly smaller than 
for the ionosphere-float model. For a measurement 
interval of a few minutes the ionosphere-weighted 

model performs equal to the ionosphere-float 
model.
  This paper demonstrated the challenging nature of 
real-time detection compared to near real-time 
detection. The MDB for a bias in the current epoch 
using a very large window length is equal to the 
MDB for a bias in the previous epoch using a 
window length of only 4 epochs. Therefore, if a
slight delay in detection is acceptable for a certain 
application, the detection performance can be 
increased for a given window length, or the window 
length can be decreased, consequently decreasing
the computational burden, for a given detection 
performance. 
  The hypothesis of a simultaneous slip on each 
phase observable of multi-frequency GNSS data
was shown to give a very elongated MDB ellipse or 
(hyper)ellipsoid with the ionosphere-float model.
These very elongated ellipses reveal a weak point 
of cycleslip detection with an ionosphere-float 
model because specific combinations of slips,
which can be present in the receiver data after a 
momentary loss of lock to a satellite, are very 
difficult to detect. One way to remedy this 
shortcoming, which is related to the uncertainty in 
the ionospheric delay, is to use an ionosphere-
weighted model. For an ionosphere-weighted 
approach, the MDB ellipse shrinks when the 
precision of the ionospheric pseudo observable 
increases.
  For optimal performance of a cycleslip detection 
algorithm, including slip combinations that are 
difficult to detect, it is advisable to use an 
ionosphere-weighted model in combination with a 
short time interval between the measurements.
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